Подводная радиолокация. Радиолокационные средства для военно-морского флота

Майор-инженер В. Камов

Командования ВМС США и других стран НАТО, осуществляя военные приготовления агрессивной направленности, считают успешную борьбу с подводными лодками противника одним из важнейших условии достижения господства на море. При решении этой задачи важная роль отводится противолодочной авиации (самолетам и вертолетам), оснащенной средствами поиска и уничтожения подводных лодок.

Принципы работы созданных средств поиска и обнаружения подводных лодок, находящихся в подводном положении, основаны на использовании физических полей (акустическое, магнитное, тепловое, радиационное), которые могут демаскировать лодки в районе поиска (рис1), а также загрязненности атмосферы выхлопными газами дизельных двигательных установок. В комплекс авиационных средств поиска и обнаружении подводных лодок включаются гидроакустическая, магнитометрическая и инфракрасная аппаратура. Подводные лодки, находящиеся в надводном положении или идущие под РДП, могут быть обнаружены с помощью радиолокационных, инфракрасных и телевизионных средств, а также газоанализирующей аппаратуры.

Гидроакустические системы появились на вооружении противолодочной авиации капиталистических государств в годы второй мировой вой ны и продолжают оставаться основным средством обнаружения подводных лодок с воздуха.

Широкое распространение в противолодочной авиации ВМС США и некоторых других государств получили две системы радиогидроакустических буев: "Джезебел" и "Джули", В настоящее время в США первая заменяется системой "Дифар", а вторая - системой "Касс". Система "Дифар", как утверждается в зарубежной печати, с помощью 2-3 РГБ обеспечивает определение места подводной лодки с достаточной точностью, в то время как раньше для этой цели требовалось большее число буев. По по своим техническим характеристикам аппаратура системы "Дифар" еще не полностью отвечает предъявляемым требованиям из-за низкой надежности используемых буев AN/SSQ-53.

Гидроакустические системы состоит из сбрасываемых и море РГБ одноразового использования, бортовой аппаратуры приема, анализа и обработки информации, получаемой от буев. По принципу действия и устройству буи делятся на пассивные и активные.

Пассивные буи обнаруживают подводную лодку но создаваемым ею шумам, а активные - путем приема отраженных от подводной лодки эхо сигналов, генерируемых взрывными источниками звука или акустической антенной буя.

Пассивные РГБ, например AN/SSQ-41, AN/SSQ-49 и AN/SSQ-53, применяются, как правило, для первичного обнаружения подводных лодок. С этой целью в районе поиска выставляется барьер или поле из буев, расстояние между которыми выбрано из расчета надежного ее обнаружения по заданной величине шумности лодки.

Для дальнейшего уточнения координат подводной лодки применяются взрывные источники звука, взаимодействующие с пассивными буями, или активные РГБ, которые также используются для первичного обнаружения. Активные РГБ, например AN/SSQ-47 и AN/SSQ-50, кроме определения местоположения, определяют дальность до цели. Они бывают направленного и ненаправленного действия. Буи направленного действия позволяют более точно определять местоположение цели при использовании меньшего их числа.

РГБ снабжаются маяками-ответчиками, работающими на одной из стандартных частот, а также ночными огнями и цветными маркерами для визуального опознавания и определения их местоположения с самолета. Буи сбрасываются с высот 50-3000 м при скорости полета самолета 280-450 км/ч. Дальность обнаружения буя самолетной РЛС с высоты 600 м составляет 20-30 км, а с высоты 1500 м-135 км. РГБ имеют специальные устройства, обеспечивающие плавное приводнение, необходимую плавучесть, а также самозатопление по истечении установленного срока действия. Размеры большинства буев стандартные)высота - 900 мм, диаметр - 124 мм).

Наряду с РГБ, предназначенными для обнаружения целей, широко используются также батитермографические буи, позволяющие дистанционно измерять температуру воды на различных глубинах до 300 м. Этим достигается более эффективное обнаружение подводных лодок с помощью обнаружительных буев в конкретных гидрологических условиях.

Согласно данным иностранной печати, происходит дальнейшее совершенствование систем радиогидроакустических буев: увеличивается дальность действия и продолжительность работы, повышается их надежность, уменьшаются вес и габариты, автоматизируются процессы управления буями и обработки информации, поступающей но радиоканалу от РГБ на борт самолета.

На противолодочных вертолетах благодаря их способности зависать над определенной точкой водной поверхности применяются опускаемые гидроакустические станции. Опускаемая на трос-кабеле акустическая антенна станции состоит из ненаправленного вибратора и гидрофона. Пеленг на цель определяется по фазовому сдвигу принятых сигналов. Индикаторный блок, размещаемый в кабине вертолета, предназначен для обработки сигналов, отображения обстановки и управления. При работе опускаемой ГАС в режиме шумопеленговаиия обеспечивается скрытность наблюдения, точное определение пеленга на подводную лодку, но в этом случае нельзя измерить до нее расстояние. При незначительной шумности подводной лодки работа опускаемой ГАС в режиме эхопеленгования имеет значительные преимущества по сравнению с шумопеленгованием. В режиме эхопеленгования станция обеспечивает определение пеленга и расстояния до подводной лодки на дальностях 9-15 км.

Противолодочные вертолеты стран НАТО оснащаются в основном американскими опускаемыми ГАС AN/AQS-10 и AN/AQS-13 или их модификациями (выпускаются в других странах), имеющими примерно одинаковые характеристики.

В таблице приведены характеристики английской станции 195 (выпущена в 1964 году) и американской AN/AQS-13 (выпущена в 1966 году).
Известны опускаемые ГАС шагового и секторного (кругового) об зора подводного пространства. Первые способны обследовать горизонт за 3-5 мин, а вторые за 30-6O с. Как сообщается в зарубежной печати, опускаемые ГАС неустойчивы к "случайным буксировкам", так как возникающие при этом помехи сильно заглушают полезные сигналы. Явления "случайной буксировки" могут иметь место тогда, когда система автоматической стабилизации "вертолета не вошла в режим.

Иностранные специалисты придают большое значение работам, направленным на создание методов, повышающих скорость обзора горизонта и увеличивающих дальность действия опускаемых ГАС, а также способов автоматической стабилизации вертолета в режиме зависания. В США ведутся также работы по созданию авиационной системы якорных радиогидроакустических буев, способных работать в течение нескольких месяцев.

Магнитометрическая аппаратура позволяет обнаруживать местные аномалии напряженности магнитного поля Земли, создаваемые корпусом подводной лодки в районе поиска К недостаткам магнитометров относятся небольшая дальность действия (300-700 м) и сильное влияние других видов магнитных помех естественного и искусственного происхождения.

ТТХ опускаемых ГАС
Характеристики Тип ГАС
195 AN/ AQ S-13
Сектор обзора, град. 30 360
Дальность действия. км 5.5 18
Рабочие частоты кГц 9-10 9,25; 10; 10,75
Акустическая мощность, кВт 4.5 5
Длительность импульса мс 4-45 3,5: 35
Вес станции, кг З00 345
Вес антенны, кг 90 84

Все противолодочные самолеты США и других стран НАТО оборудованы магнитометрами AN/ASO-10, AN/ASQ-501 и DHAX-1. применение которых не зависит от состояния моря и времени суток. Однако они имеют ограниченные возможности. Зарубежные специалисты стремятся повысить эффективность магнитометров путем повышения их чувствительности и снижения влияния помех, создаваемых самолетами, на которых они устанавливаются. Для устранения влияния помех используются компенсаторы, которые применяются совместно с магнитометрами.
Радиолокационные станции являются основным средством обнаружения подводных лодок в сложных метеорологических условиях и ночью. Большинство из них работает в сантиметровом диапазоне. Дальность обнаружения радиолокационными станциями подводных лодок, находящихся в надводном положении, составляет 90-100 км, под РДП - 20-25 км, а под перископом - 2-3 км.
В настоящее время на вооружении противолодочных самолетов и вертолетов США состоят РЛС AN/ APS-20, AN/APS-55, AN/APS-88 и др.

По мнению иностранных специалистов, весьма перспективными для поиска подводных лодок являются РЛС бокового обзора, так как они имеют более высокую разрешающую способность, позволяют просматривать более широкую полосу и облучают цель сравнительно короткое время, благодаря чему затрудняется обнаружение самолета.

Развитие РЛС противолодочной авиации стран НАТО идет по пути увеличения их дальности действия и повышения разрешающей способности, а также уменьшения веса и габаритов.

Инфракрасные средства. Па противолодочных самолетах используются ПК станции переднего обзора системы "Флир" для обнаружения надводных целей в ночных условиях и обнаружения температурного следа кильватерной струи подводной лодки. Иностранные военно-морские специалисты считают, что, хотя повышение температуры при прохождении подводной лодки достигает всего лишь 0,005° С, разность температур кильватерного следа и поверхности моря может быть обнаружена с помощью инфракрасного детектора. Повышенная температура воды сохраняется некоторое время, что позволяет определить след кильватерной струи даже через 5-6 ч после того, как подводная лодка находилась в районе поиска.

Работа ИК станции, имеющей пассивный принцип действия, не обнаруживается противником и не подвержена преднамеренным помехам с его стороны. Станция относительно проста по устройству, имеет небольшие габариты и вес. Однако работает она эффективно только пра благоприятных метеорологических условиях; При дожде и тумане дальность действия ее значительно уменьшается. Кроме того, инфракрасная станция обнаруживает тепловой след при движении подводной лодки на небольших глубинах и малых скоростях, обеспечивающих выход теплового следа на поверхность. В настоящее время на противолодочных самолетах устанавливается станция типа AN/ AAR-31.

Система "Флир", по данным зарубежной печати, пока устанавливается только на противолодочных самолетах Р-ЗС "Орион" и S-3A "Викинг". В комплексе с другими средствами она обеспечивает надежное обнаружение надводных целей.

Газоанализирующая аппаратура способна обнаруживать дизельные подводные лодки по загрязнению атмосферы выхлопными газами дизельных установок при движении подводной лодки в надводном положении или при использовании устройства РДП. В этом случае поиск подводной лодки самолетом предусматривает отбор проб воздуха на высотах 90- 120 м перпендикулярно к направлению ветра. Когда цель обнаружена, самолет определяет высоту потолка следа выхлопных газов, а затем ведет поиск на высоте середины следа. Американская аппаратура (AN/ASR-2) обнаруживает подводную лодку по истечении 3-4 ч после погружения ее на глубину. Английская газоанализирующая аппаратура "Автоликус" МкЗ способна определить местоположение подводной лодки, идущей под РДП с наветренной стороны относительно самолета на расстоянии около 50 км.

В зарубежной печати сообщалось, что разрабатывается также аппаратура для обнаружения атомных подводных лодок по радиационному заражению воды.

Зарубежное военное обозрение №5 1975 С. 73-77

Радиолокационная станция (РЛС), радар — система для обнаружения воздушных, морских и наземных объектов, а также для определения их дальности, скорости и геометрических параметров. В основе радиолокации лежит способность радиоволн отражаться от различных предметов. В классическом импульсном радаре передатчик формирует радиочастотный импульс, который излучается направленной антенной. В случае, если на пути распространения радиочастотной волны встречается какой либо предмет, часть энергии отражается от этого предмета, в том числе — в направлении антенны. Отраженный радиосигнал принимается антенной и преобразуется приемником для дальнейшей обработки. Так как радиоволны распространяются с постоянной скоростью, то по времени прохождения сигнала от станции до объекта и обратно можно определить расстояние до объекта. Помимо наклонной дальности до цели с помощью радара можно также определить скорость и направление перемещения, а также оценить ее размеры. Для радиолокации используются УКВ и СВЧ диапазоны волн, первые РЛС работали, как правило, на частотах от 100 до 1000 МГц.

Радары классифицируются по множеству принципов, приведем наиболее распространенные параметры их классификации. По назначению различают РЛС обнаружения, РЛС управления и слежения, панорамные РЛС, РЛС бокового обзора, метеорологические РЛС; РЛМ целеуказания, РЛС контрбатарейной борьбы; РЛМ обзора обстановки. По прохождению сигнала выделяют активные (с активным ответом) и пассивные. По характеру носителя станции подразделяются на: наземные, корабельные и авиационные РЛС. По разнесению приемной и передающей части выделяют совмещенные и раздельные РЛС. По методу действия РЛС подразделяют на надгоризонтальные и загоризонтальные радиолокаторы. По виду зондирующего сигнала различают РЛС непрерывного действия и импульсные. По диапазону волн различают: метровые, дециметровые, сантиметровые и миллиметровые РЛС. По измеряемым координатам выделяют: однокоординатные, двухкоординатные, трехкоординатные. По способу сканирования пространства: без сканирования, со сканированием в горизонтальной плоскости, со сканированием в горизонтальной плоскости с V-лучом, со сканированием в вертикальной плоскости, со спиральным сканированием, с переключением лепестков диаграммы направленности. По способу отображения информации РЛС бывают: с индикатором дальности, с раздельными индикаторами дальности и азимута (высоты), с индикатором кругового обзора с индикатором азимут-дальность.

Также различают первичные и вторичные радиолокаторы. Первичный (пассивный) радиолокатор, в основном, служит для обнаружения целей, освещая их электромагнитной волной и затем принимая отражения (эхо) этой волны от цели. Поскольку скорость электромагнитных волн постоянна, становится возможным определить расстояние до цели, основываясь на измерении различных параметров распространения сигнала.

В основе устройства такой радиолокационной станции лежат три компонента: передатчик, антенна и приемник. Передатчик является источником электромагнитного сигнала высокой мощности. Он может представлять собой мощный импульсный генератор. В зависимости от конструкции, передатчик работает либо в импульсном режиме, формируя повторяющиеся короткие мощные электромагнитные импульсы, либо излучает непрерывный электромагнитный сигнал. Антенна выполняет фокусировку сигнала передатчика и формирование диаграммы направленности, а также приём отражённого от цели сигнала и передачу этого сигнала в приёмник. В зависимости от реализации приём отражённого сигнала может осуществляться либо той же самой антенной, либо другой, которая иногда может располагаться на значительном расстоянии от передающего устройства. В случае, если передача и приём совмещены в одной антенне, эти два действия выполняются поочерёдно, а чтобы мощный сигнал, просачивающийся от передающего передатчика в приёмник, не ослепил приёмник слабого эха, перед приёмником размещают специальное устройство, закрывающее вход приёмника в момент излучения зондирующего сигнала. Приёмник выполняет усиление и обработку принятого сигнала.

Различные РЛС основаны на различных методах измерения отражённого сигнала: частотный метод (основан на использовании частотной модуляции излучаемых непрерывных сигналов; фазовый метод (основан на выделении и анализе разности фаз отправленного и отражённого сигналов); импульсный метод (передаёт излучающий сигнал только в течение очень краткого времени, коротким импульсом (обычно приблизительно микросекунда), после чего переходит в режим приёма и слушает эхо, отражённое от цели, в то время как излучённый импульс распространяется в пространстве).

Вторичная радиолокация используется в авиации для опознавания. Принцип действия локатора заключался в использовании энергии самолётного ответчика для определения положения воздушного судна. Основная особенность — использование активного ответчика на самолётах. Принцип действия вторичного радиолокатора несколько отличается от принципа первичного радиолокатора. В основе устройства такой станции лежат компоненты: передатчик, антенна, генераторы азимутальных меток, приемник, сигнальный процессор, индикатор и самолетный ответчик с антенной. Передатчик служит для формирования импульсов запроса в антенне. Антенна обеспечивает излучения импульсов запроса и приём отражённого сигнала. Приёмник служит для приёма импульсов, а сигнальный процессор — для обработки принятых сигналов. Самолётный ответчик с антенной передавал содержащую дополнительную информацию импульсного радиосигнала обратно в сторону РЛС по запросу.

Первый прибор, фиксирующий отражения радиоволн был запатентован в 1904 г., первые экспериментальные РЛС обнаружения самолетов появились в 1934-1935 гг. А уже с 1940 г. различное радарное оборудование массово выпускалось в Германии, СССР, США, Франции и Японии. РЛС активно использовались в период Второй мировой войны, развиваясь поэтапно, в соответствии с требованиями военных на фронтах.

Первоначально наибольшее распространение получили станции обнаружения самолетов в Великобритании, которые начали массово устанавливать на военные корабли, а в 1937 году создали сеть радиолокационного обнаружения «Chain Home» вдоль побережья Ла-Манша и восточного побережья Англии, состоявшую из 20 станций, способных обнаружить самолет на дистанции до 350 км. Со временем РЛС стали использоваться и для наведения истребителей для отражения бомбардировщиков. Благодаря РЛС британской системе ПВО и ВВС удалось выйти победителем в воздушной войне с Германией в начале войны. В дальнейшем РЛС обнаружения подводных лодок с самолетов решило проблему деблокирования морских путей империи. Самолетные станции, которые появились у союзников в 1940 году, обеспечивали обнаружение подлодок на дистанции до 17 миль. Даже идущая на глубине в несколько метров субмарина обнаруживалась бортовым радаром патрульного самолета на расстоянии не менее 5-6 миль. И уже на последнем этапе войны РЛС обнаружения самолетов противника в воздухе существенно помогали британским и американским бомбардировщикам бороться с истребителями противника над территорией Германии.

В 1935 г. немецкая компания «GEMA» создала первый прибор радиообнаружения для Кригсмарине, а с 1937 г. радары начали устанавливать на военных кораблях. С 1941 г. оснащались станциями и подводные лодки: это позволяло успешно атаковать корабли и суда ночью и в плохих погодных условиях, а в 1942 года немецкие подводники получили в свое распоряжение систему «FuMB», позволявшую определять момент облучения субмарины радаром корабля или патрульного самолета противника. Кроме того, командиры субмарин, уклоняясь от вражеских кораблей, оснащенных радарами, стали активно применять малые ложные радиоконтрастные цели, имитировавшие собой рубку подлодки. С 1939 г. в Германии вводится в строй система раннего радиообнаружения. А с 1941 г. Люфтваффе принимает на вооружение первые авиационные радары. Уже к середине войны радары Кригсмарине по многим параметрам стали уступать РЛС союзиков, а боязнь командиров кораблей быть обнаруженным противником по их излучению, свела их применение к миниму.

На вооружение в СССР радиолокационные станции были приняты в 1939 году и впервые применены для дальнего обнаружения самолетов в июне 1941 г. при отражении налетов германских бомбардировщиков на Москву. В дальнейшем станции применялись при защите Ленинграда, Горького, Саратова. В 1942 г. на вооружение поступили первые авиационные радары для самолетов «Пе-2». Лишь с 1943 г. в системе ПВО стало применяться наведение истребительной авиации станциями РЛС. Станции орудийной наводки, поставляемые по ленд-лизу, в СССР применялись, основном, для зенитных орудий. Для контрбатарейной борьбы радаров явно не хватало. Также и на кораблях были установлены РЛС зарубежного изготовления. На протяжении всей войны советские подлодки не имели ни РЛС, ни ГАС. Причем и перископные антенны появились на субмаринах, только в середине 1944 года, да и то всего на семи подлодках. Советские подводники не могли эффективно действовать в темное время суток, не могли выходить в бесперископные атаки, ставшие нормой во флотах других стран, а для приема и передачи радиодонесений необходимо было всплывать в надводное положение. В годы войны в СССР было изготовлено 1500 РЛС всех типов, в то время, как по ленд-лизу получено 1788 станций для зенитной артиллерии, 373 морских и 580 авиационных. Кроме того, значительная часть советских РЛС была просто скопирована с импортных образцов. В частности, 123 артиллерийских радиолокатора «СОН-2» являлись точной копией английского радара «GL-2».

В 1940 г. в США на вооружение поступают первые радары дальнего обнаружения, а через два года на флоте внедряются радары системы автоматического наведения зенитных орудий. В американском флоте к 1945 году были разработаны и приняты на вооружение более двух десятков РЛС, использовавшихся для обнаружения надводных целей. С их помощью американские моряки, например, обнаруживали субмарину противника в надводном положении на расстоянии до 10 миль. Немаловажную роль в разработках американских РЛС сыграл обмен информацией с Великобританией, благодаря чему американцы получали сведения о самых последних разработках, как союзников, так и Германии. США пренадлежало безоговорочное лидерство в разработке радаров корабельного и авиационного базирования. За годы войны США отправили союзникам по договору лен-лиза более 54 тысяч авиационных РЛС.

В годы, предшествующие Второй мировой войне, развитие радиолокации в Японии шло довольно медленно, несмотря на имеющийся технический потенциал. Первый локатор дальнего обнаружения «Type 11» был создан всего за несколько дней до вступления в войну, в ноябре 1941 года. В ходе войны развитие японских радаров отставало от других стран на 3-4 года. Вместе с тем, японская промышленность была готова к выпуску высококачественных комплектующих, но разработки радиолокационных устройств носили случайный и бессистемный характер. Основная масса японских РЛС была скопирована с немецких, английских и американских разработок. За годы войны было построено около 7,5 тысяч радаров 30 типов.

Приблизительно в годы войны было выпущено около 150 тысяч РЛС различных типов и назначения, в т.ч. Великобританией 22 тысячи, Германией — 20 тысяч, США – 96 тысяч.

В годы войны далеко вперед шагнула и гидроакустика, на которую до войны больших ставок адмиралы не делали.

Гидролокатор (сонар) — средство звукового обнаружения подводных объектов с помощью акустического излучения. По принципу действия гидролокаторы бывают пассивные и активные.

Пассивные — позволяющие определять место положения подводного объекта по звуковым сигналам, излучаемым самим объектом (шумопеленгование). Активные — использующие отражённый или рассеянный подводным объектом сигнал, излучённый в его сторону гидролокатором.

Активный гидролокатор «ASDIC» в его первоначальной примитивной форме был изобретён в Великобритании в конце первой мировой войны. Основной принцип его действия остался неизменным до настоящего времени. Однако за прошедшие годы эффективность гидролокатора значительно возросла, расширились масштабы его использования, а также увеличилось число классов кораблей, с которых он мог применяться для проведения поиска и атак подводных лодок противника. Основу составляет приёмопередатчик, который посылает звуковые импульсы в требуемом направлении, а также принимает отражённые импульсы, если посылка, встретив на своём пути какой-либо объект, отразится от него. Вращая приёмопередатчик подобно прожектору, можно определить по компасу направление, в котором послан сигнал, а следовательно, и направление объекта, от которого он отражён. Заметив промежуток времени между посылкой импульса и приёмом отражённого сигнала, можно определить расстояние до обнаруженного объекта.

В годы войны были разработаны и доведены до массового выпуска гидролокаторы с активным и пассивным трактами, а также станции звукоподводной связи. А в июне 1943 года на вооружение американской противолодочной авиации поступили первые радиогидроакустические буи. А для борьбы с немецкими акустическими торпедами союзники разработали прибор акустических помех, буксировавшийся за кормой корабля. Немецкие же подводники широко использовали имитационные патроны, сбивавшие с толку неприятельских акустиков. Высокочастотные гидролокаторы, установленные в конце войны на подводных лодках США, позволяли проникать через минные поля.

Гидролокатор характеризовался следующими параметрами. В зависимости от частоты, излучающей сонаром, определялась дальность его действия. Так, высокочастнойные гидролокаторы имели огранияенный диапазон, но могли обнаруживать небольшие предметы. Например, мины. Длительность импульса также прямопропорциональна дальности действия сонара. От мощности сонара зависила его чувсчтивтельность.

Необходимо раз и навсегда прояснить ситуацию с этим эффектом, чтобы вопрос о том, можно ли обнаружить подлодку в погружённом состоянии с помощью надводной или воздушной РЛС, более не возникал, равно как и желание назвать этот способ "новым".

Приёмы работы с информацией требуют того, чтобы все источники данных были бы разбиты на группы по степени верифицируемости, после чего, при возможности, необходима их перекрёстная проверка. В нашем случае объём имеющейся информации достаточно велик для того, чтобы произвести такую проверку.

Научные обоснования возможности обнаружить подводный объект с помощью радиолокации.

2. Поттер, Различные перспективные нетрадиционные методы обнаружения подводных лодок, 1999 год, .

По физике определения турбулентностей:

3. Джордж и Тантал, Измерение турбулентности смешанных течений в океане с использованием РЛС синтезированной апертуры, 2012 год, .

4. Тюнали, Горб Бернулли, создаваемый подводной лодки, 2015 год, .

6. Современная китайская статья. Лю и Дзин, Математическое моделирование регистрации при помощи РЛС синтезированной апертуры кильватерного следа погруженного объекта, 2017 год, (недоступна просто так для скачивания).

Конечно, необходимо знание английского.

Стоит заметить, что реально простейший поиск с использованием научной терминологии даёт десятки научных работ, экспериментов, компаний и т. д., имеющих отношение к обнаружению подводных объектов с помощью радиолокационного наблюдения за поверхностью.

В нём также перечислены теоретические обоснования того, что может стоять за эффектом появления аномалий на экранах РЛС. В докладе перечислены одна теория появления атмосферных эффектов над местом нахождения ПЛ и четыре теории появления аномалий на поверхности воды, причём, о каждой из них сказано как о "well-known", то есть авторы доклада упоминают их как хорошо известные.

Простейшая перекрёстная проверка по заголовкам показывает, что, например, Джейк Тюнали, чья работа упомянута в списке выше, исследовал тот самый «Горб Бернулли», о котором упоминается в американском докладе 1975 года. То есть явление описывается и в старом рассекреченном докладе (поверхностно), сделанном в США, и в английской научной публикации 2015 года. Далее, забегая вперёд, скажем, что именно эффект Бернулли может порождать ту самую «стоячую волну» которая являлась предметом исследований по НИР «Окно» в СССР конца 80-х. К этому мы ещё вернёмся.

Какой вывод мы должны сделать из этого всего? Простой: эффект проявления аномалий на поверхности воды над движущейся в глубине ПЛ имеет под собой научные обоснования. Либо необходимо опровергнуть выкладки всех вышеперечисленных авторов (что, опять же забегая вперёд, невозможно, так как они многократно проверены. Но пытливый читатель вполне может и попробовать и опровергнуть).

Итак, вывод номер один: наука не просто допускает обсуждаемый эффект, она его подтверждает.


Картинка для привлечения внимания. Некоторые (не все!) волновые эффекты, порождаемые движущейся ПЛ, включая т. н. возмущения Кельвина. Подробности и математический аппарат легко находятся по запросу Kelwin Wake. Картинка с сайта одной из компаний американского ВПК (вы легко поймёте, чем она занимается)

Теперь нам необходимо определиться с обнаружениями ПЛ с помощью наблюдения поверхностных аномалий в радиолокационном диапазоне. Поскольку всё, связанное с подплавом и противолодочной борьбой в мире тщательно секретится, мы должны просто ответить на вопрос – есть ли задокументированные свидетельства или нет, не окунаясь в то, какие они и о чём.

Тут всё просто – упоминавшийся уже американский доклад был до 1988 года засекречен, доступ у нему имели только военные и оборонные подрядчики, написан он был «для своих», причём в крайне чувствительной сфере противолодочной обороны, и предполагать, что в нём перечислены ложные (не неверные, а именно ложные) данные по меньшей мере глупо. Если бы этот документ был бы единственным документом, касающимся обсуждаемой темы, то его целиком можно было бы отвергнуть, как дезинформацию со стороны противника, но, как мы видим, он далеко не единственный. Соответственно, на вопрос о том, существуют ли задокументированные данные о радиолокационном обнаружении подводных лодок в погруженном состоянии, приходится ответить утвердительно: как минимум у ВМС США они есть. Можно, конечно, построить теорию о том, что научные статьи, перечисленные выше верны, а доклад фальшивка, но кому бы это пришло в голову делать и, главное, зачем?

Итак, вывод номер два: с высокой степенью вероятности, ВМС США имеет массу задокуменитрованной статистики об обнаружении ПЛ в погружённом состоянии с помощью надводных (и воздушных) РЛС.

Любой, кто занимался расследованиями или разведдеятельностью, знает, что и неподтверждённые документально слухи, рассказы и т.д. могут иметь значение. По крайней мере часть из них может быть проверена и в дальнейшем подтверждена документально (при наличии допуска к документам). Кроме того, сам факт большого количества личных свидетельств, пусть даже и неточных, которые более или менее похожим образом описывают некое явление или событие, является т.н. «информационным следом», и свидетельствует о том, что, с высокой степенью вероятности, но описываемое явление или событие на самом деле имело место, в том или ином виде.

То есть в документально неподтверждённых, но похожих свидетельствах, мы в каком-то смысле имеем дело с рассказами «мудрецов, ощупывавших слона с завязанными глазами». Их, эти свидетельства, можно было бы оспорить, но, только, если бы не существовало «твёрдых», вышеперечисленных свидетельств, подтверждённых документально. А они есть, и упомянуты выше.

В исходной статье было и приведены высказывания генерал-лейтенента Сокерина и капитана первого ранга Солдатенкова. Реально, таких свидетельств в разы больше. Нет никакой возможности приводить их цитатами, формат статьи просто не предусматривает размещения такого массива данных.

Вместо этого приведём некую «сумму» - то, что можно установить, предположив, что незадокументированные свидетельства верны, и создав из них некий короткий «рассказ». Естественно, что собрать «выжимку» из рассказов ветеранов ВМС США весьма трудно, особенно учитывая то, с какой остервенелостью ВМС США до сих пор «пускают пыль в глаза».

Поэтому ниже вниманию читателя предлагается «выжимка» из того, что говорили офицеры ВМФ СССР и РФ.

Несколько десятилетий назад в СССР произошёл случай. Расчёт ЗРК ради тренировки «вёл» движущуюся в надводном положении советскую ДЭПЛ (это технически осуществимо). В определённый момент боец, сидевший у экрана РЛС и докладывавший о движении «цели», услышал в наушниках: «Она уже пятнадцать минут как погрузилась!» На что ему пришлось удивлённо ответить: «А я её вижу…»

Так эффект стал известен в Советском Союзе. Примерно в те же годы, странные отметки на воде стали обнаруживаться новыми ЗГРЛС. Анализ рапортов операторов РЛС и сравнение их с рапортами экипажей находившихся в тех же районах самолётов ВВС и ВМФ, показал, что в ряде случаев, и авиация наблюдает на экранах РЛС странные тороидальные или кольцевые сигналы. Авиаторы сообщали об этом как о дефекте РЛС и требовали устранить, потому, что визуально на воде ничего не обнаруживалось.

Трудно сказать, кто первый «срастил» данные о положении ПЛ со статистикой обнаружения радиолокационных аномалий, но с начала 80-х годов исследованиям по радиолокационному поиску ПЛ что называется «дали ход». Предположительно, ещё до этого был проведён успешный эксперимент по обнаружению своей АПЛ в океане из космоса (вроде как это была К-14 в 1972-м), а в 1982 году, опираясь на полученные в ходе «разбора» аномалий данные и новые спутники, космическая разведка смогла отследить американскую АПЛ в подводном положении.

Для дальнейшей отработки систем радиолокационного космического обнаружения ПЛ была создана летающая лаборатория на базе самолёта Ту-134, однако, к сожалению, этот самолёт вместе с группой учёных, занимавшихся вопросом, разбился. В отечественной эта катастрофа известна , нет там только того, что это была за модификация упавшего самолёта – Ту-137ИК (ИК – «измерительный комплекс»), он же «самолёт-лаборатория №400».

Упоминается лишь следующее.

В качестве служебных пассажиров на борту самолёта находились специалисты, участвовавшие в создании установленной на нём системы слежения за подводными лодками, включая главного конструктора:
Ф. А. Кулев.
В. А. Фролов.
В. П. Калачев.
В. М. Алексеев.
В. А. Арчаков.
В. И. Харламов.

По факту в СССР одновременно погибли все ведущие специалисты, работавшие над темой вместе с единственным экземпляром экспериментального «борта». Это серьёзно замедлило работы над концепцией и очень сильно их «исказило».

Только в середине 80-х годов работы по направлению восстановились, теперь уже силами МА ВМФ. По вполне понятной причине, влиять на космическую программу СССР морские лётчики не могли, и их усилия были сконцентрированы на поиске с помощью самолётов. РЛС противолодочного Ту-142 поверхностные аномалии обнаруживать не могла, зато их видели флотские Ту-95, которых в ВМФ СССР было немало. Вскоре отработалась тактика поиска подлодок по радиолокационному сигналу с поверхности. Пара самолётов, один Ту-95 и один Ту-142 вылетали на поиск, после чего Ту-95 засекал аномалии на поверхности, а Ту-142 сразу же проверял наличие под аномалией подводной лодки.

Точно неизвестно, насколько участились «контакты», но в 1986-м году, автор такого метода, В. Кравченко, получил Орден Красного знамени. За это, да.

Такие результаты требовали уже научной отработки, и в недрах флотских научно-исследовательских институтов стартовали две научно-исследовательских работы (НИР). НИР «Окно» и НИР «Эхо». Обе ставили перед собой задачу проверить реальность радиолокационного поиска погруженных ПЛ. Работа шла тяжело, на руководителя темы с целью захвата документов по НИР во Владивостоке даже было совершено нападение (отбитое) силами, предположительно американской спецгруппы, но в итоге, всё-таки тема «пошла». По программе был переоборудован как минимум один Бе-12 из состава морской авиации ТОФ, и «брошен» на решение реальных задач.

Результат превзошёл все возможные ожидания. Экипаж Бе-12 просто ВИДЕЛ подлодки под водой. Количество обнаружений выросло в десятки раз, советские подводники получили возможность играть с американцами в те же игры, в которые до этого американцы играли с ними, например за несколько часов восстанавливать потерянный контакт, сутками подряд висеть у американцев на «хвосте», непрерывно получать от авиации данные о тактической обстановке на сотни миль вокруг, гонять их как душе угодно.

Основой метода, примененного в программе «Окно», было обнаружение тороидной волновой структуры, описанной уже упоминавшимся А. Семёновым, который назвал её «Стоячая волна», и которая, судя по всему, порождается тем самым «Горбом Бернулли», упомянутым как в американском докладе, так и в научных работах Джейка Тюнали.

Полученные результаты должны были лечь в основу нового поисково-прицельного комплекса, но СССР вскоре развалился, а руководителям новой России стало не до флота…

Стоит поверить генерал-лейтенанту Сокерину. Скорее всего, американцы продвинулись куда дальше в изучении этого эффекта. Ведь у них не было развала, подобного развалу СССР, а самое главное – они могли «подпереть» свою радиолокационную технику своей вычислительной техникой, в которой они лидировали и лидируют.

Советские пилоты вынуждены были всматриваться в концентрические отметки на экранах РЛС и решать – оно это или нет.

Американцы, же накопив статистику обнаружений, вполне могли создать вычислительную технику и программное обеспечение, способное «отфильтровать» порождаемые именно подлодкой аномалии, от тех, которые могли происходить по другим причинам (из-за большого косяка рыб, например. Эксперименты под радиолокационному обнаружению скоплений рыбы в СССР проводились на Камчатке в 70-х) , и просто выводить на экраны тактической обстановки примерные районы нахождения подводной цели, чтобы потом действительно просто сбросить туда буй и всё проверить.

Собственно, что-то такое и произошло.

На сегодня эти методы отшлифованы ими настолько, что у них даже отпала необходимость иметь на борту самолёта ПЛО магнитометр. На «Посейдонах», производимых для ВМС США его просто нет, он не нужен, подлодки прекрасно и точно обнаруживаются без него. А вот на экспортные машины, с упрощёнными возможностями БРЭО, американцы магнитометр ставят. Распространение технологий, позволяющих за считанные часы вскрыть всю подводную обстановку над акваторией, размером с Чёрное море, не в их интересах.

"Выжимка" из незадокументированных сообщений на этом закончена.

Те, кто имеет отношение к разведке, морской авиации, ВМФ, кто летает на перехваты американцев из состава ВКС и т.д. компетентные люди могут подтвердить – Базовая патрульная авиация ВМС США ушла на средние высоты. Это – факт. Им больше не надо спускаться вниз для того, чтобы точно выставить поле буёв, или несколько буёв – это осталось в начале 80-х. Сейчас всё, видимо, и быстрее, и проще…

Такой вал информации игнорировать нельзя. Банальное упоминание темы «Окно» на «Военном обозрении» выявило массу людей, которые прекрасно о ней осведомлены изучали её в военных училищах, вели поиск подводных лодок, используя радиолокационные методы. Многие отметились в комментариях.

Российские лётчики морской авиации не просто знают про эффект – они его изучают и по мере сил пользуются. Проблемой являются предельно устаревшие поисково-прицельные системы, многократно уступающие тем, что американцы использовали в конце 80-х годов.

Младшие командиры подводников часто тоже знают об этой проблеме. Знают об этом многие командиры подлодок.

Но вот «несколькими уровнями выше» начинаются проблемы – лица ответственные за развитие флота, за выбор того, на что направить финансирование и т.д. ведут себя так, как будто описанного способа обнаружения подлодок просто не существует, и лодке достаточно не шуметь, чтобы её нельзя было обнаружить.

Чем это чревато? Тем, что в ходе боевых действий, подводные лодки будут получать задачи исходя из условий их необнаруживаемости, и из этих же условий будет назначаться обеспечение выполнения боевых задач – авиационное, например.

А их вполне будут обнаруживать, причём это будет не сильно сложно.

Дальнейшее понятно?

И надо понимать, что возможности базовой противолодочной авиации ВМС США «подпирает» спутниковая разведка. И это они тоже тщательно секретят. Правда, получается иногда смешно:

Нью-Йорк таймс, 11.05.1999 г.

С начала космической эры большинство спутников наблюдали Землю камерами, которые в принципе аналогичны камерам любого туриста. Однако в 1978 году Национальное управление по аэронавтике и исследованию космического пространства НАСА запустило новый спутник, который делал снимки по отраженным от поверхности планеты радиоволнам.

Известный как Seasat, это спутник-радар увидел землю и море новыми способом, его снимки открывали узкие линии в океане - следы, оставленные проходом кораблей и подводных лодок . Как-то удалось отличить признаки глубокой турбулентности от регулярной пены и волн моря.

Подвиги Seasat внезапно закончились в 1978 году, когда космический аппарат неожиданно спустился через 100 дней, а Пентагон стал глубоко амбивалентен своим открытиям.

Ну конечно, флот сразу же потерял интерес к своим открытиям, а как же. Разве могли они поступить по-другому? А мы, конечно им поверим.

Больше (включая новые спутники) – у , со ссылкой на оригинал.

Закончить хотелось бы цитатой Сергея Геннадьевича Рослякова, капитана первого ранга, бывшего командира АПЛ «К-455», бывшего командира дивизии подводных лодок.

Еще в 1985 году я не мог понять: ПОЧЕМУ наша АПЛ в Тихом океане идет под винтами транспорта гражданского 10 часов на скорости 15 узлов (28 км в час при водоизмещении в 5500 тон) и перед сеансом связи СРАЗУ резко вправо на скорости в 5 узлов. А над нами «Орион-Р3с». Вначале думал, что это результат работы низкочастотных буев БПА ВМС США, состоявших на вооружении БПА («Орион-Р3с»). Но потом были другие случаи, которые опровергли мое мнение. И это все в море, где НИКТО ТЕБЕ не поможет.
…Америкосы «видят» наши АПЛ везде…

Так капитан первого ранга С.Г. Росляков откомментировал статью , где было упомянуто радиолокационное обнаружение подводных лодок.

Как говорится, умному достаточно. А остальные могут и дальше делать вид, что всё хорошо.

P. S. Способы борьбы с явлением и снижения вероятности обнаружения ПЛ указанным способом есть, но о них, по понятным причинам, никто в здравом уме рассказывать не будет. Тем не менее, закрывать глаза на проблему больше нельзя. Время почти вышло.

Ctrl Enter

Заметили ошЫ бку Выделите текст и нажмите Ctrl+Enter

Материал во многом созвучен с личными ощущениями о том, что происходит с отечественным военно-морским флотом, однако в то же время содержит кое-что такое, о чем раньше слышать не доводилось, а именно – новый способ выявления и слежения за подводными лодками:

«…технология, позволяющая самолётам осуществлять радиолокационный поиск находящихся в погруженном (подводном) положении подводных лодок по образуемым ими при движении возмущениям надводной среды (РЛС засекает как бы «следы» на поверхности воды, которые оставляет идущая в глубине подлодка) ».

Разумеется, стало очень интересно разобраться, о чем идет речь, благо автор статьи, уважаемый Александр Тимохин, не просто описал явление, но и дал достаточно широкую доказательную базу, со ссылками на источники, в том числе – англоязычные.

Итак, мы имеем тезис:

«Сложив всё вышесказанное, приходится признать: возможность засечь подводную лодку с помощью средств радиолокационного и оптико-электронного наблюдения за поверхностью воды или льда – это реальность. И эта реальность, к сожалению, полностью отрицается современной отечественной военно-морской стратегией ».

Изучим источники, на основании которых уважаемый А.Тимохин сформулировал данный тезис. Итак, первое – это доклад «A RADAR METHOD FOR THE DETECTION OF SUBMERGED SUBMARINES» («Радиолокационный метод обнаружения погружённых подводных лодок»), опубликованный в 1975 г. Автор настоящей статьи скачал и прилежно перевел английский текст, насколько это было в его силах (увы, уровень владения английским языком «чтение со словарем», так что возможны ошибки). Если кратко, то суть доклада такова:

1. Начиная со времен Второй мировой войны, и особо, на протяжении 1959-1968 гг. зафиксированы многократные случаи обнаружения при помощи РЛС подводных лодок, следующих в подводном положении. Обнаруживались практически все типы существовавших тогда американских ПЛ на глубинах до 700 футов (213,5 м).

2. Хотя в некоторых случаях контролировать движение ПЛ удавалось достаточно продолжительное время (до 2 часов), но в целом подобный эффект не являлся постоянным. То есть его могли наблюдать в какой-то момент, а потом не наблюдать: могли засечь ПЛ, тут же ее потерять и не суметь восстановить контакт, даже зная положение подводной лодки.

3. А вот теперь – самое странное, и очень необычное. Дело в том, что радаром обнаруживалась вовсе не подводная лодка – это невозможно, РЛС не работает под водой. Можно предположить, что радаром обнаруживаются какие-то следы над подводной лодкой на поверхности моря… ничего подобного! Радар обнаруживает возмущения в воздушном пространстве на высоте 1000-2000 футов (300-600 м) над уровнем моря! Звучит совершенно бредово (что признает сам автор доклада) но, тем не менее, многократно подтверждалось наблюдениями.

Во избежание недоразумений с переводом процитирую фрагмент доклада на английском:

«It is hard to imagine how a submerged submarine can give rise to an effect one or two thousand feet above the surface. It is indeed understandable why there might be skepticism. Nevertheless, it is an experimental observation reported on many occasions ».

Затем автор доклада указывает, что в США так и не смогли придумать теорию, которая могла бы обосновать такое явление и пытается объяснить, что же, по его мнению, все-таки происходит. Рассмотрев различные «источники», которые хотя бы теоретически могли привести к такому явлению (тепловой след, влияние магнитных полей и т.д.), автор приходит к следующему выводу.

Радар видит некую «воздушную турбулентность», а образуется она так. Известно, что слой воздуха у морской воды насыщен водными испарениями и находится в постоянном движении (конвекция). Крупное подводное тело, каковым является подводная лодка, оказывает давление на воду, в которой она движется, в том числе – вверх (то есть лодка как бы «раздвигает» водную толщу, «толкая» воду в разные стороны). Это давление создает подводную волну, направленную в том числе и вверх, которая, достигая поверхностного слоя воды, меняет его относительно естественного состояния (в докладе этот эффект назван «Бернуллиевым горбом» (Bernoulli Hump)). И вот эти-то изменения провоцируют направлении конвективного движения воздуха и создают в итоге те самые воздушные турбулентности, которые и засекает радар.

Автор указывает, что работы по данному направлению в США были свернуты, и считает, что это было сделано зря, потому что указанный эффект, позволяющий наблюдать за подводными лодками, хотя и не возникает на постоянной основе, но все же наблюдается достаточно регулярно. И отсутствие теории, почему так происходит, не является основанием для того, чтобы прекращать работы в данном направлении. Интересно, что завершается доклад классической страшилкой: русские БПК оснащаются очень мощными радарами, сильнее тех, что использовали США для наблюдения за ПЛ, а значит, они, наверное, давно во всем разобрались и…

Таким образом, мы можем резюмировать: по американским данным и в определенных обстоятельствах ПЛ, находящаяся в подводном положении, может быть обнаружена при помощи РЛС. Но… надо сказать, что американцы к подводной угрозе относились очень серьезно. Еще свежа была память о «мальчиках Деница» и советский флот в 50-е и 60-е годы строился преимущественно подводным.

ДЭПЛ проекта 613. В период 1950-1957 гг. было построено 215 подлодок

И все-таки американцы закрывают проект. Это может говорить только об одном – несмотря на многие прецеденты на тот момент обнаружение субмарин при помощи РЛС так и не вышло на уровень технологии, то есть чего-то такого, что могло бы давать устойчивые результаты при поиске вражеских ПЛ. При этом нет никаких сведений о том, что американцы возобновили работу в этом направлении. То есть у нас есть доклад, в котором автор считает необходимым возобновить работы по данному проекту, но нет никаких данных, что к его мнению прислушались.

Следующим аргументом в пользу того, что американцы не только возобновили работы по радиолокационным методам обнаружения ПЛ, но и добились в них полного успеха, служит рассказ генерал-лейтенанта В.Н. Сокерина, бывшего командующего авиацией ВВС и ПВО Балтийского флота.

Не цитируя его полностью, коротко напомним суть: в 1988 г. Северный флот проводил учения, в ходе которых в море было развернуто 6 атомных и 4 дизельных подводных лодки. При этом каждая из них получила свой морской район, где она должна была находиться, однако в пределах заданного района (а они были достаточно обширными) командир уже сам определял, где находиться его подводному кораблю. Другими словами, до окончания маневров никто, в том числе и командование флота не могло знать точного местоположения развернувшихся кораблей. А затем появился патрульный «Орион» наших «заклятых друзей» — он прошел над районами развертывания подводных лодок странным, «ломаным» маршрутом. А когда офицеры флота сопоставили маневрирование наших подводных лодок, то:

«…наложив на карту маршрут «движения» «Ориона» сделал однозначный вывод, все десять «поворотных» точек его фактической линии пути находились абсолютно точно над фактическим местом (на время пролёта) всех 10 (!) подлодок. Т.е. в первый раз за 1 час и 5 минут, второй — за 1 час и 7 минут, один самолёт «накрыл» все 10 ПЛ ».

Что хотелось бы сказать по этому поводу? Буквально пара слов о человеке, который рассказал нам это: Виктор Николаевич Сокерин, заслуженный военный летчик России, командовал ВВС и ПВО Балтфлота в 2000-2004 г. и… покинул этот пост, как и ряды наших вооруженных сил, написав рапорт «по собственному», в знак протеста против развала морской (и не только) авиации РФ. А ведь был «на виду», «на хорошем счету» у наших власть предержащих. Я думаю, нет смысла объяснять, что в каком бы плохом состоянии не находился тот или иной род войск, его высшие офицеры всегда имеют возможность обеспечить себе безбедное и комфортное существование. Всего-то и дел – где-то промолчать дипломатичненько, где-то бодро отрапортовать то, что от тебя ждут услышать… Да только Виктор Николаевич был человеком совершенно иного склада, из тех, для кого дело, которым он занимается, превыше всего. Рекомендую почитать его сборник стихотворений – да, не пушкинский слог, но сколько в нем любви к небу и самолетам… А еще – В.Н. Сокерин долгое время служил на севере и дружил с Тимуром Автандиловичем Апакидзе.

Разумеется, автору настоящей статьи захотелось узнать подробнее, что же рассказал В.Н. Сокерин по вопросам обнаружения подводных лодок методами радиолокации. И вот тут начались странности. Дело в том, что уважаемый А. Тимохин пишет, что цитаты В.Н. Сокерина взяты им из статьи «Что спросить у Ясеня», М.Климова, но… проблема в том, что их там нет. Автор статьи, Максим Климов, упоминает факт выявления 10 советских подводных лодок, но безо всякой ссылки на уважаемого В.Н. Сокерина. Что ж, будем искать.

Гугл сообщил, что указанные строки встречаются в статье «Противолодочная борьба. Взгляд из С.С.С.Р.», вышедшей из-под пера Семенова Александра Сергеевича — «Были прямые доказательства, что ВМС США намного дальше продвинулись в разработке «нетрадиционных» способов поиска. Приведу свидетельство командующего морской авиацией Балтийского флота… »

В подтверждение своих слов А.С. Семенов приводит интересный скриншот:

Хотелось бы отметить следующее. Достоверность данного скриншота не вызывает ни малейших сомнений. Общеизвестно, что В.Н. Сокерин после ухода в запас совершенно не чурался интернета, кстати на ВО есть его материал), также совершенно наверняка он присутствовал на сайте «АВИАФОРУМ», откуда, собственно, и взят этот скриншот. Увы, на сегодняшний день ветка обсуждения, в которой находился этот комментарий В.Н. Сокерина, находится в архиве, так что добраться до него «из интернетов» невозможно. Однако один из администраторов форума был настолько любезен, что подтвердил факт существования данного комментария.

И вот тут автор настоящей статьи оказался в весьма двусмысленном положении. С одной стороны, слова Виктора Николаевича никаких подтверждений или доказательств не требуют – они сами являются доказательством. А с другой… Если бы это было сказано в интервью, или же изложено в статье, тут никаких вариантов быть уже не могло. А вот реплика в интернете, тем более выдернутая из контекста – это все-таки немного другое. В общении на подобных форумах «для своих» люди могут шутить, рассказывать байки и т.д., не думая о том, что кто-то потом на их словах «научную диссертацию защищать будет». Повторимся, многое стало понятнее, была бы возможность прочитать всю ветку форума, но увы, ее нет. И спросить Виктора Николаевича не получится – он покинул этот форум много лет назад.

Но вот что еще требуется отметить особо – читая слова В.Н. Сокерина, мы все-таки не видим прямого подтверждения тому, что радиолокационный метод обнаружения вражеских ПЛ был доведен до результата в США. Уважаемый В.Н. Сокерин рассказывает лишь о том, что «Орион» с высокой точностью выявлял расположение наших подводных лодок, причем он сам не является первоисточником информации (говорит со слов неназванного офицера) и делает предположение, что, возможно, это следствие темы «Окно», которое наши забросили, а американцы продвинули.

«Орион» Королевских ВВС Австралии

Но вспомним, что, помимо гидроакустического, существуют еще и другие методы определения местонахождения подводных лодок. Один из них – магнитометрический, направленный на обнаружение аномалий магнитного поля Земли, которые создает столь крупный объект, как подводная лодка. Или вот, например, инфракрасный (который, кстати, ни в каком случае на надо путать с радиолокационным) – дело в том, что атомная подводная лодка использует воду в качестве охладителя, которая затем сбрасывается за борт, имея, конечно же, более высокую температуру, чем окружающее лодку море или океан. И это можно отследить. Разумеется, подобный способ годится только для обнаружения атомных ПЛ, но со временем – кто знает? Ведь подводная лодка движется в водной толще, «толкая» от себя воду винтом или водометом, и во всяком случае – это трение. А трение, как известно, повышает температуру тела, и, в принципе, кильватерный след, наверное, хоть чуточку, да теплее окружающей его воды. Вопрос только в «чуткости» приборов наблюдения.

То есть, строго говоря, тот факт, что американцы засекли наши подводные лодки (о чем, собственно, и говорит В.Н. Сокерин), еще не свидетельствует о торжестве радиолокационного метода обнаружения субмарин – возможно, американцы использовали какой-то иной, ранее существующий метод, усовершенствовав его.

Кстати говоря, а что это за «тема «Окно»» такая? Попробуем разобраться с этим на основании все той же статьи «Противолодочная борьба. Взгляд из С.С.С.Р.» А.С. Семенова, тем более что уважаемый А. Тимохин в своей статье «представляет его как: «Один из «отцов» темы «Окно», лётчик-противолодочник с Тихоокеанского флота »

Принцип действия «Окна» А.С. Семенов описывает так:

«…с помощью бортовой РЛС …находить те же зоны возмущений, называемых «Стоячая волна». При определенном опыте и настройке РЛС они выглядели концентрическими окружностями, диаметром несколько десятков километров с лодкой в центре этого круга… Попытка применить этот способ на Ил-38, Ту-142 особого успеха не имела. Ясно было, что для подобной цели нужна разработка РЛС соответствующего диапазона частот ».

Сразу обратим внимание, что по своему принципу действия «Окно» кардинально отличается от того, что собирались использовать американцы. Те собирались искать «воздушный след», а у нас – морской, некие концентрические волны… или нет? Дело в том, что при описании работы «Окна» А.С. Семенов указывает: «Краткое описание принципа. Из повести «Нетрадиция»».

Что это за «Нетрадиция» такая? А это повесть все того же А.С. Семенова. Ну и что, скажет читатель, неужели автор не может взять описание из своего же «ранешнего» произведения? Конечно, может, это нормально, если бы только не одно «но». Жанр повести. Просто, открыв страничку А.С. Семенова на самиздате, читаем (специально подчеркнул красным):

Фэнтези. Нет, понятно, что «Сказка – ложь, да в ней намек, добрым молодцам урок», само произведение основано на том, что автор – попаданец «в самого себя», то есть он возвращается в себя молодого во всем блеске полученного им жизненного опыта за годы службы и творит альтернативную реальность. Часто в таких произведениях раскрывается много реально существовавшего… Но проблема в том, что нам остается только гадать, что из сказанного в повести – правда, а что – художественный вымысел. И то сказать – произведение написано не самым простым языком, оно, если можно так выразиться, предназначено скорее «своим и для своих», то есть для тех, кто с тяготами морской службы знаком не понаслышке, и кто, по сей видимости, легко способен отделить правду от вымысла.

В общем, А.С. Семенов – человек, очевидно, знающий, но вот то, что он написал… получается может быть «так, не совсем так, или даже совсем не так». Но в таком случае есть ли смысл ссылаться на его работы?

А еще, при чтении его «Противолодочная борьба. Взгляд из С.С.С.Р.», которая позиционируется автором именно как статья, а не как литературно-фантастическое произведение, сильно резануло глаз вот что. А.С. Семенов, описывая состояние наших подводных сил (если коротко, то по А.С. Семенову – мрак полный, американцы нас контролировали на каждом шагу и в любой момент могли взять за мягкие места), ссылается на вице-адмирала Рязанцева Валерия Дмитриевича, автора книги «В кильватерном строю за смертью». При этом, А.С. Семенов характеризует Валерия Дмитриевича как чрезвычайно компетентного человека.

Так вот все дело в том, что В.Д. Рязанцев в 2014 г написал статью с чрезвычайно «говорящим» названием: «Еще раз о морских сказках и военных моряках-сказочниках», в которой, в том числе, уделил внимание и «Окну». С его слов, само начало работ по этой теме представляло собой форменное жульничество и подтасовку фактов, что на промежуточных испытаниях командиры кораблей и самолетов получили приказ: ««Кровь из носа», но результаты исследований должны быть положительными», и что все это было сделано с тем, чтобы получить финансирование, а затем:

«Хочется спросить сегодня тех, кто растратил огромные денежные средства: «Где новая техника, которая позволяла бы обнаруживать иностранные пл? Где тот самолет или вертолет, на котором установлена эта техника? Нет ни самолетов, ни вертолетов, ни техники. И денег нет. Тема «Окно» оказалась мыльным пузырем, «потемкинской деревней», пустышкой ».

Однако обо всем этом А.С. Семенов не упоминает, хотя его статья «Противолодочная борьба. Взгляд из С.С.С.Р.» была выложена на «Самиздате» много позднее материала вице-адмирала. Впрочем, автор вовсе не собирается упрекать А.С. Семенова в преднамеренном сокрытии информации – он ведь никак не обязан был читать все работы В.Д. Рязанцева и вполне мог просто пропустить эту его статью.

И вот что у нас получается. Звучит «аларм» — подводные лодки Отечества в опасности, американцы используют новый метод радиолокационного обнаружения подводных субмарин, видят всех! Однако, когда начинаешь в деталях разбираться во всем этом, то получается, что обоснованием «аларма» служат:

1. Доклад 1975 года рождения, из которого следует, что работы в данном направлении когда-то в США были закрыты, причем совершенно неясно, возобновлялись ли они по результатам доклада;
2. Форумная реплика очень уважаемого человека;
3. И, наконец, произведение, написанное в фантастическом жанре «альтернативная история».

Тут возникает вопрос – а достаточна ли эта база для объявления «аларма»? Пусть каждый, читающий эти строки, решит это для себя сам.

И еще одно – подледное обнаружение подводных лодок. Здесь уважаемый А.Тимохин ссылается на слова «ещё одного офицера ВМФ, опытнейшего противолодочника, командира противолодочного корабля, капитана первого ранга А.Е. Солдатенкова». Все это так – уважаемый А.Е. Солдатенков действительно опубликовал мемуары «Адмиральские маршруты (или вспышки памяти и сведения со стороны), но… приходится констатировать, что А. Тимохин цитировал А.Е. Солдатенкова не совсем корректно.

Суть такова, что знакомый А.Е. Солдатенкова действительно наблюдал некий эллипс вокруг места, где вскоре всплыла подводная лодка. Более того, подобные эллипсы фиксировались РЛС и раньше (вне льдов), но их долгое время никто не связывал с подводными лодками, считая всего лишь помехами. Потом – связали, уже при использовании спутников радиолокационной разведки: «Так, например, в районе Кубы в Карибском море спутником была обнаружена по кольцевому эффекту американская подводная лодка».

Вообще говоря, все вышесказанное отлично коррелирует с данными доклада «A RADAR METHOD FOR THE DETECTION OF SUBMERGED SUBMARINES» – подобные образования наблюдали и там. Но вот дальше А.Е. Солдатенков пытается объяснить природу данного феномена… или, скорее, просто разыгрывает читателя.

«При движении ПЛ в подводном положении заданная глубина погружения удерживается горизонтальными рулями, которыми управляет боцман или авторулевой. Точность удержания заданной глубины хода в пределах ±5 метров. То есть гигантская масса металла (от 6000 до 33800 тонн) совершает вертикальные колебания по глубине, а вместе с массой колеблется и её гравитационное поле. Часть гравитационного поля корпуса подводного корабля, с регистрируемой измерительными приборами напряжённостью, выходит на поверхность воды, на границу двух сред - воды и воздуха. Вот эта часть гравитационного поля, на каком-то одинаковом уровне своей напряжённости вступает в резонансное взаимодействие с приповерхностными слоями морской воды и воздуха ».

Для тех, кто за текущими хлопотами совсем забыл курс физики, напомним, что гравитационное поле — это фундаментальное физическое поле, через которое осуществляется гравитационное взаимодействие между всеми материальными телами. Причем суть этого взаимодействия заключается в том, что сила гравитационного притяжения между двумя точками прямо пропорциональна их массе и обратно пропорциональна квадрату разделяющего их расстояния. То есть в гравитационном поле находятся все предметы мира – с той же подводной лодкой взаимодействуют не только «поверхностные слои морской воды», но и Солнце, Юпитер и Альфа Центавра, просто сила их взаимодействия пренебрежимо мала. А вот «часть гравитационного поля, торчащего над поверхностью воды» — это, вообще говоря, физико-математический нонсенс.

Конечно, можно было бы предположить, что уважаемый Е.А. Солдатенков просто не вполне корректно сформулировал свою мысль, и под «гравитационным полем лодки» понимается то расстояние от нее, на котором ее гравитационное притяжение способно сколько-то заметно влиять на какие-то частицы воздуха и воды. Но и в этом случае дальнейшие его объяснение данного феномена выглядят не совсем научно, и позволяют заподозрить уважаемого автора в… скажем так, одном из любимых морских видов спорта: «травлении баек» доверчивым гражданским.

Но вот что важно — сам А.Е. Солдатенков предваряет свои научные выкладки словами «Относительно всего вышесказанного я осмелюсь предположить следующее». То есть он прямо пишет, что его слова – не более, чем его личная гипотеза. В то же время цитата А. Тимохина выглядит так, словно А.Е. Солдатенков совершенно уверен, и не испытывает ни тени сомнения в своих словах.

Но самый большой вопрос даже не в этом. Как мы уже говорили ранее, уважаемый А. Тимохин в своей статье «Флот без кораблей. ВМФ России на грани коллапса» сделал два ключевых утверждения. Первое – что современные технологии позволяют обнаруживать подводные лодки, находящиеся в подводном положении и даже подо льдом. И второе – что наличие подобных возможностей нами полностью игнорируется.

Так вот, для подтверждения первого тезиса А. Тимохин цитирует фрагмент одной из глав книги А.Е. Солдатенкова. Но почему-то совершенно «забывает» процитировать другой фрагмент той же главы, в котором А.Е. Солдатенков предполагает… что данный способ обнаружения ПЛ вовсю используется ВМФ РФ! Цитируем:

«Но есть косвенные признаки того, что поляризационный метод обнаружения ПЛ пробил себе дорогу в жизнь. Так, например, гидроакустический комплекс тяжёлого атомного крейсера «Пётр Великий» (при всём его совершенстве) не мог обеспечить полного освещения подводной обстановки во время трагических событий с АПРК «Курск», тем не менее он её имел. Мало того кто-то из офицеров прессцентра ГШ ВМФ в открытую сказал, что за подводной обстановкой в месте катастрофы ведётся радиолокационное наблюдение. Это можно было принять за некомпетентность или оговорку бывшего политработника, но офицер сказал правду, просто в неё никто не поверил. Кроме того, нигде в открытой печати нет упоминаний о работах в области поляризационного способа обнаружения ПЛ. А это происходит в двух случаях: первый, когда этой проблемой вообще никто не занимается, второй, когда получен значительный прогресс и тему засекретили.

Ещё один признак. Сверхдальний поход тяжёлого атомного крейсера «Петр Великий» вокруг света на Дальний Восток для участия в учениях ТОФ без кораблей охранения. Вроде бы большая неосторожность для единственного на Планете корабля такого класса. Но нет, БИП (или БИЦ) крейсера знал ВСЮ обстановку вокруг корабля: надводную, подводную, воздушную, космическую и вряд ли дал бы себя обидеть. Ещё один косвенный признак: при общении со СМИ в интервью высоких военно-морских начальников перестали звучать трагические нотки при упоминании о подводной угрозе со стороны вероятного противника, а раньше аж надрывались от сознания собственного бессилия. Плюс утрата интереса к противолодочным надводным кораблям и сокращение бригад ОВР на всех флотах. Плюс возобновление полётов самолётов Дальней авиации вокруг границ Российской Федерации. Ведь не только для тренировки пилотов сжигаются сотни тонн авиационного керосина ».

Получается нехорошо: там, где слова уважаемого А.Е. Солдатенкова подтверждают тезисы автора статьи «Флот без кораблей. ВМФ России на грани коллапса», они не только цитируются, но еще и представляются читателям как данность (в то время как сам А.Е. Солдатенков представляет лишь личную гипотезу). А в тех случаях, когда мнение А.Е. Солдатенкова приходит в противоречие с мнением А. Тимохина, то что же, получается, замнем для ясности?

Ну и какой же вывод прикажете из всего из этого делать? А никакого – в распоряжении автора нет фактов, которые подтвердили бы или опровергли предположения уважаемого А. Тимохина. И, несмотря на всю выказанную выше критику доказательной базы, на которой строится статья «Флот без кораблей. ВМФ России на грани коллапса», вполне может оказаться так, что основные ее постулаты все-таки абсолютно верны.

Личное мнение автора настоящей статьи, которое он никому не навязывает, заключается в следующем. Вероятнее всего, что метод обнаружения ПЛ в подводном положении при помощи радиолокации действительно существует. Но он, как и другие методы обнаружения ПЛ (магнитометрический, гидроакустический, тепловой, а теперь, по некоторым данным, запатентован еще и какой-то «химический»), не является гарантией обнаружения и уничтожения подводных лодок, хотя и может сработать при определенных обстоятельствах – как и все перечисленные выше методы. Иными словами, вполне возможно, и даже более чем вероятно, что подводникам теперь будет еще сложнее, но, тем не менее, подводные лодки как класс боевых кораблей вовсе не потеряли еще своего боевого значения.

Косвенно эта точка зрения подтверждается следующими соображениями. Допустим, в конце 20-го века США действительно изобрели способ, который позволяет выявлять подводные лодки с эффективностью, близкой к 100%. Но в этом случае сама концепция американских АПЛ, подразумевающих возможность самостоятельно действовать в условиях сильного ПЛО противника, теряет смысл. Зачем же тогда американцы наращивают темпы ввода в строй своих новейших «Вирджиний»? Ведь совершенно очевидно, что рано или поздно потенциальные противники США тоже научатся этому методу и смогут выявлять американские АПЛ, действующие неподалеку от баз.

В подобном случае было бы логично ожидать создания какого-то совершенно нового типа подводных лодок, а может и отказа от них вообще, или хотя бы замедления программ строительства новых АПЛ – но ничего такого не происходит. И, скорее всего, это свидетельствует о том, что с методами поиска ПЛ в подводном положении радиолокационными средствами все не так однозначно.

Но в любом случае нам нужно четко понимать, что подводная лодка вовсе не является самодостаточным средством борьбы на море. С иллюзиями о том, что, развивая один вид морских вооруженных сил, можно решить задачи ВМФ в целом, следует распрощаться как можно быстрее. Подводная лодка, при всех своих плюсах – это не вундерваффе, и нанести урон противнику подводники смогут только в плотном взаимодействии с надводными кораблями, самолетами морской авиации сухопутного и палубного базирования и при наличии развитой системы морской разведки и целеуказания – загоризонтных РЛС, спутников-шпионов, сетей подводных гидроакустических станций и прочая, и прочая.