Радиоактивные превращения. Альфа- и бета-распад

Стабильные атомные ядра изобаров имеют минимальную величину энергии, которая определяется его массой (см. рис. 2.2.1). Масса ядра с данным общим числом нуклонов определяется, в свою очередь, его протонно-нейтронным составом, поскольку массы протона и нейтрона не равны между собой. В этой связи, среди ядер изобаров должны существовать ядра с определенное соотношением между числом протонов и нейтронов (дорожка стабильности на рис. 1.1.2), которому отвечают ядра с наименьшей массой, а, следовательно, и полной энергией. Ядру изобара с любой другой конфигурацией нуклонного состава энергетически выгодно превращение в ядро с оптимальным соотношением между числом протонов и нейтронов. Выход на дорожку стабильности в принципе возможен, если ядро испускает избыточный протон или нейтрон. Но для отделения избыточного нуклона требуется энергия не меньше энергии связи нуклона в ядре, т.е. энергия материнского ядра должна быть больше энергии дочернего ядра и свободного нуклона на величину энергии связи нуклона в материнском ядре. Если же эта энергия меньше энергии связи избыточного нейтрона в ядре, то могут иметь место самопроизвольные изменения в составе ядер, обусловленные явлением b-распада – взаимопревращением внутри ядра нуклонов одного рода в другой (протона в нейтрон или наоборот). Направление процесса для ядра изобара определяется лишь тем, при каком соотношении между числом протонов и нейтронов ядро имеет наибольшую энергию связи, которой соответствует наименьшая масса ядра (см. рис. 2.2.1).

Бета-распад (b-распад) является спонтанным процессом преобразования ядра, в результате которого ядро изменяет свой заряд на ΔΖ = ±1, сохраняя при этом неименное число нуклонов А (массовое число). В некоторых случаях образуются свободные b-частицы (электрон β - или позитрон β + ) или происходит «захват» ядром электрона из электронной оболочки собственного атома. Свойства электрона и позитрона тождественны, за исключением знака электрического заряда. Потоки образующихся b- частиц образуют b-излучение .

β-Распад – самый распространенный вид радиоактивных превращений ядер в природе. В отличие от α-распада, который наблюдается исключительно у тяжелых ядер, β-распаду подвержены ядра практически во всей области значений массового числа А, начиная от единицы (свободный нейтрон) и заканчивая массовыми числами самых тяжелых ядер.

Энергия, выделяющаяся при β-распаде, опять же, в отличие от α-распада, лежит в довольно широком интервале значений от 0,02 МэВ прираспаде ядра трития 3 Н до 16,4 МэВ при распаде ядра 12 N.

Периоды полураспада β-активных ядер изменяются в очень широких пределах от 10 -2 с до 10 18 лет .


Известны три разновидности b-распада.

Альфа и бета-излучения в общем случае называются радиоактивными распадами. Это процесс, представляющий собой испускание из ядра, происходящий с огромной скоростью. В результате атом или его изотоп может превратиться из одного химического элемента в другой. Альфа и бета-распады ядер характерны для нестабильных элементов. К ним относятся все атомы с зарядовым числом больше 83 и массовым числом, превышающим 209.

Условия возникновения реакции

Распад, подобно другим радиоактивным превращениям, бывает естественным и искусственным. Последний происходит из-за попадания в ядро какой-либо посторонней частицы. Сколько альфа и бета-распада способен претерпеть атом - зависит лишь от того, как скоро будет достигнуто стабильное состояние.

При естественных обстоятельствах встречается альфа и бета-минус распады.

При искусственных условиях присутствует нейтронный, позитронный, протонный и другие, более редкие разновидности распадов и превращений ядер.

Данные названия дал занимавшийся изучением радиоактивного излучения.

Различие между стабильным и нестабильным ядром

Способность к распаду напрямую зависит от состояния атома. Так называемое "стабильное" или нерадиоактивное ядро свойственно нераспадающимся атомам. В теории наблюдение за такими элементами можно вести до бесконечности, чтобы окончательно убедиться в их стабильности. Требуется это для того, чтобы отделить такие ядра от нестабильных, которые имеют крайне долгий период полураспада.

По ошибке такой "замедленный" атом можно принять за стабильный. Однако ярким примером может стать теллур, а конкретнее, его изотоп с номером 128, имеющий в 2,2·10 24 лет. Этот случай не единичный. Лантан-138 подвержен полураспаду, срок которого составляет 10 11 лет. Этот срок в тридцать раз превышает возраст существующей вселенной.

Суть радиоактивного распада

Данный процесс происходит произвольно. Каждый распадающийся радионуклид приобретает скорость, являющуюся константой для каждого случая. Скорость распада не может измениться под влиянием внешних факторов. Неважно, будет происходить реакция под воздействием огромной гравитационной силы, при абсолютном нуле, в электрическом и магнитном поле, во время какой-либо химической реакции и прочее. Повлиять на процесс можно только прямым воздействием на внутренность атомного ядра, что практически невозможно. Реакция спонтанная и зависит лишь от атома, в котором протекает, и его внутреннего состояния.

При упоминании радиоактивных распадов часто встречается термин "радионуклид". Тем, кто не знаком с ним, следует знать, что данное слово обозначает группу атомов, которые имеют радиоактивные свойства, собственное массовое число, атомный номер и энергетический статус.

Различные радионуклиды применяются в технических, научных и прочих сферах жизнедеятельности человека. К примеру, в медицине данные элементы используются при диагностировании заболеваний, обработке лекарств, инструментов и прочих предметов. Имеется даже ряд лечебных и прогностических радиопрепаратов.

Не менее важным является и определение изотопа. Этим словом называют особую разновидность атомов. Они имеют одинаковый атомный номер, как у обычного элемента, однако отличное массовое число. Вызвано это различие количеством нейтронов, которые не влияют на заряд, как протоны и электроны, но меняют массу. К примеру, у простого водорода их имеется целых 3. Это единственный элемент, изотопам которого были присвоены названия: дейтерий, тритий (единственный радиоактивный) и протий. В остальных случаях имена даются в соответствии с атомными массами и основным элементом.

Альфа-распад

Это вид радиоактивной реакции. Характерен для естественных элементов из шестого и седьмого периода таблицы химических элементов Менделеева. В особенности для искусственных или трансурановых элементов.

Элементы, подверженные альфа-распаду

В число металлов, для которых характерен данный распад, относят торий, уран и прочие элементы шестого и седьмого периода из периодической таблицы химических элементов, считая от висмута. Также процессу подвергаются изотопы из числа тяжелых элементов.

Что происходит во время реакции?

При альфа-распаде начинается испускание из ядра частиц, состоящих из 2 протонов и пары нейтронов. Сама выделяемая частица является ядром атома гелия, с массой 4 единицы и зарядом +2.

В итоге появляется новый элемент, который расположен на две клетки левее исходного в периодической таблице. Такое расположение определяется тем, что исходный атом потерял 2 протона и вместе с этим - начальный заряд. В итоге масса возникшего изотопа на 4 массовые единицы уменьшается по сравнению с первоначальным состоянием.

Примеры

Во время такого распада из урана образуется торий. Из тория появляется радий, из него - радон, который в итоге дает полоний, и в конце - свинец. При этом в процессе возникают изотопы этих элементов, а не они сами. Так, получается уран-238, торий-234, радий-230, радон-236 и далее, вплоть до возникновения стабильного элемента. Формула такой реакции выглядит следующим образом:

Th-234 -> Ra-230 -> Rn-226 -> Po-222 -> Pb-218

Скорость выделенной альфа-частицы в момент испускания составляет от 12 до 20 тыс. км/сек. Находясь в вакууме, такая частица обогнула бы земной шар за 2 секунды, двигаясь по экватору.

Бета-распад

Отличие этой частицы от электрона - в месте появления. Распад бета возникает в ядре атома, а не электронной оболочке, окружающей его. Чаще всего встречается из всех существующих радиоактивных превращений. Его можно наблюдать практически у всех существующих в настоящее время химических элементов. Из этого следует, что у каждого элемента имеется хотя бы один подверженный распаду изотоп. В большинстве случаев в результате бета-распадапроисходит бета-минус разложение.

Протекание реакции

При данном процессе происходит выбрасывание из ядра электрона, возникшего из-за самопроизвольного превращения нейтрона в электрон и протон. При этом протоны за счет большей массы остаются в ядре, а электрон, называемый бета-минус частицей, покидает атом. И поскольку протонов стало больше на единицу, ядро самого элемента меняется в большую сторону и располагается справа от исходного в периодической таблице.

Примеры

Распад бета с калием-40 превращает его в изотоп кальция, который расположен справа. Радиоактивный кальций-47 становится скандием-47, который может превратиться в стабильный титан-47. Как выглядит такой бета-распад? Формула:

Ca-47 -> Sc-47 -> Ti-47

Скорость вылета бета-частицы составляет 0,9 от скорости света, равной 270 тыс. км/сек.

В природе бета-активных нуклидов не слишком много. Значимых из них довольно мало. Примером может послужить калий-40, которого в естественной смеси содержится лишь 119/10000. Также естественными бета-минус-активными радионуклидами из числа значимых являются продукты альфа и бета-распад урана и тория.

Распад бета имеет типичный пример: торий-234, который при альфа-распаде превращается в протактиний-234, а затем таким же образом становится ураном, но другим его изотопом под номером 234. Этот уран-234 вновь из-за альфа-распада становится торием, но уже иной его разновидностью. Затем этот торий-230 становится радием-226, который превращается в радон. И в той же последовательности, вплоть до таллия, лишь с различными бета-переходами назад. Заканчивается этот радиоактивный бета-распад возникновением стабильного свинца-206. Это превращение имеет следующую формулу:

Th-234 -> Pa-234 -> U-234 -> Th-230 -> Ra-226 -> Rn-222 -> At-218 -> Po-214 -> Bi-210 -> Pb-206

Естественными и значимыми бета-активными радионуклидами являются К-40 и элементы от таллия до урана.

Распад бета-плюс

Также существует бета-плюс превращение. Оно также называется позитронный бета-распад. В нем происходит испускание из ядра частицы под названием позитрон. Результатом становится превращение исходного элемента в стоящий слева, который имеет меньший номер.

Пример

Когда происходит электронный бета-распад, магний-23 становится стабильным изотопом натрия. Радиоактивный европий-150 становится самарием-150.

Возникшая реакция бета-распада может создать бета+ и бета- испускания. Скорость вылета частиц в обоих случаях равна 0,9 от скорости света.

Другие радиоактивные распады

Не считая таких реакций, как альфа-распад и бета-распад, формула которых широко известна, существуют и другие, более редкие и характерные для искусственных радионуклидов процессы.

Нейтронный распад . Происходит испускание нейтральной частицы 1 единицы массы. Во время него один изотоп превращается в другой с меньшим массовым числом. Примером может стать превращение лития-9 в литий-8, гелия-5 в гелий-4.

При облучении гамма-квантами стабильного изотопа йода-127 он становится изотопом с номером 126 и приобретает радиоактивность.

Протонный распад . Встречается крайне редко. Во время него происходит испускание протона, имеющего заряд +1 и 1 единицу массы. Атомный вес становится меньше на одно значение.

Любое радиоактивное превращение, в частности, радиоактивные распады, сопровождаются выделением энергии в форме гамма-излучения. Его называют гамма-квантами. В некоторых случаях наблюдается рентгеновское излучение, имеющее меньшую энергию.

Представляет собой поток гамма-квантов. Является электромагнитным излучением, более жестким, чем рентгеновское, которое применяется в медицине. В результате появляются гамма-кванты, или потоки энергии из атомного ядра. Рентгеновское излучение также является электромагнитным, но возникает из электронных оболочек атома.

Пробег альфа-частиц

Альфа-частицы с массой от 4 атомных единиц и зарядом +2 движутся прямолинейно. Из-за этого можно говорить о пробеге альфа-частиц.

Значение пробега зависит от изначальной энергии и колеблется от 3 до 7 (иногда 13) см в воздухе. В плотной среде составляет сотую долю от миллиметра. Подобное излучение не может пробить лист бумаги и человеческую кожу.

Из-за собственной массы и зарядового числа альфа-частица имеет наибольшую ионизирующую способность и разрушает все на пути. В связи с этим альфа-радионуклиды наиболее опасны для людей и животных при воздействии на организм.

Проникающая способность бета-частиц

В связи с малым массовым числом, которое в 1836 раз меньше протона, отрицательным зарядом и размером, бета-излучение оказывает слабое действие на вещество, через которое пролетает, но притом полет дольше. Также путь частицы не прямолинейный. В связи с этим говорят о проникающейся способности, которая зависит от полученной энергии.

Проникающие способности у бета-частиц, возникших во время радиоактивного распада, в воздухе достигают 2,3 м, в жидкостях подсчет ведется в сантиметрах, а в твердых телах - в долях от сантиметра. Ткани организма человека пропускают излучение на 1,2 см в глубину. Для защиты от бета-излучения может послужить простой слой воды до 10 см. Поток частиц с достаточно большой энергией распада в 10 Мэв почти весь поглощается такими слоями: воздух - 4 м; алюминий - 2,2 см; железо - 7,55 мм; свинец - 5,2 мм.

Учитывая малые размеры, частицы бета-излучения имеют малую ионизирующую способность по сравнении с альфа-частицами. Однако при попадании внутрь они намного опаснее, чем во время внешнего облучения.

Наибольшие проникающие показатели среди всех видов излучений в настоящее время имеет нейтронное и гамма. Пробег этих излучений в воздухе иногда достигает десятков и сотен метров, но с меньшими ионизирующими показателями.

Большинство изотопов гамма-квантов по энергии не превышают показателей в 1,3 МэВ. Изредка достигаются значения в 6,7 МэВ. В связи с этим для защиты от такого излучения используются слои из стали, бетона и свинца для кратности ослабления.

К примеру, чтобы десятикратно ослабить гамма-излучения кобальта, необходима свинцовая защита толщиной около 5 см, для 100-кратного ослабления потребуется 9,5 см. Бетонная защита составит 33 и 55 см, а водная - 70 и 115 см.

Ионизирующие показатели нейтронов зависят от их энергетических показателей.

При любой ситуации лучшим защитным методом от излучения станет максимальное отдаление от источника и как можно меньшее времяпрепровождение в зоне высокой радиации.

Деление ядер атомов

Под атомов подразумевается самопроизвольное, или под влиянием нейтронов, на две части, примерно равные по размерам.

Эти две части становятся радиоактивными изотопами элементов из основной части таблицы химических элементов. Начинаются от меди до лантаноидов.

Во время выделения вырывается пара лишних нейтронов и возникает избыток энергии в форме гамма-квантов, который гораздо больше, чем при радиоактивном распаде. Так, при одном акте радиоактивного распада возникает один гамма-квант, а во время акта деления появляется 8,10 гамма-квантов. Также разлетевшиеся осколки имеют большую кинетическую энергию, переходящую в тепловые показатели.

Высвободившиеся нейтроны способны спровоцировать разделение пары аналогичных ядер, если они расположены вблизи и нейтроны в них попали.

В связи с этим возникает вероятность возникновения разветвляющей, ускоряющейся цепной реакции разделения атомных ядер и создания большого количества энергии.

Когда такая цепная реакция находится под контролем, то её можно использовать в определённых целях. К примеру, для отопления или электроэнергии. Такие процессы проводятся на атомных электростанциях и реакторах.

Если потерять контроль над реакцией, то случится атомный взрыв. Подобное применяется в ядерном оружии.

В естественных условиях имеется только один элемент - уран, имеющий лишь один делящийся изотоп с номером 235. Он является оружейным.

В обыкновенном урановом атомном реакторе из урана-238 под влиянием нейтронов образуют новый изотоп под номером 239, а из него - плутоний, который является искусственным и не встречается в естественных условиях. При этом возникший плутоний-239 применяется в оружейных целях. Этот процесс деления атомных ядер является сутью всего атомного оружия и энергетики.

Такие явления, как альфа-распад и бета-распад, формула которых изучается в школе, широко распространенны в наше время. Благодаря данным реакциям, существуют атомные электростанции и многие другие производства, основанные на ядерной физике. Однако не стоит забывать про радиоактивность многих таких элементов. При работе с ними требуется специальная защита и соблюдение всех мер предосторожности. В противном случае это может привести к непоправимой катастрофе.

Ядра большинства атомов - это довольно устойчивые образования. Однако ядра атомов радиоактивных веществ в процессе радиоактивного распада самопроизвольно превращаются в ядра атомов других веществ. Так в 1903 году Резерфорд обнаружил, что помещенный в сосуд радий через некоторое время превратился в радон. А в сосуде дополнительно появился гелий: (88^226)Ra→(86^222)Rn+(2^4)He. Чтобы понимать смысл написанного выражения, изучите тему о массовом и зарядовом числе ядра атома .

Удалось установить, что основные виды радиоактивного распада: альфа и бета-распад происходят согласно следующему правилу смещения:

Альфа-распад

При альфа-распаде излучается α-частица (ядро атома гелия). Из вещества с количеством протонов Z и нейтронов N в атомном ядре оно превращается в вещество с количеством протонов Z-2 и количеством нейтронов N-2 и, соответственно, атомной массой А-4: (Z^A)X→(Z-2^(A-4))Y +(2^4)He. То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.

Пример α-распада: (92^238)U→(90^234)Th+(2^4)He.

Альфа-распад - это внутриядерный процесс . В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.

Бета-распад

При бета-распаде излучается электрон (β-частица). В результате распада одного нейтрона на протон, электрон и антинейтрино, состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне: (Z^A)X→(Z+1^A)Y+(-1^0)e+(0^0)v. Соответственно, образовавшийся элемент смещается в периодической системе на одну клетку вперед.

Пример β-распада: (19^40)K→(20^40)Ca+(-1^0)e+(0^0)v.

Бета-распад - это внутринуклонный процесс . Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.

Гамма-распад

Кроме альфа и бета-распада существует также гамма-распад. Гамма-распад - это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях либо при радиоактивных распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни - менее наносекунды.

Также существуют распады с эмиссией нейтрона, протона, кластерная радиоактивность и некоторые другие, очень редкие виды распадов. Но превалирующие

Второй случай рассмотрим на примере распада изотопа Хлора-17, схема которого приведена на рисунке Рис.7.

Из схемы видно, что собственно b -распад Хлора-17 может происходить по трем путям (синие линии).

В первом случае атом дочернего нуклида Аргон-18 образуется в основном состояниии. На этом акт единичного распада завершается.

Во втором случае атом дочернего нуклида образуется в возбужденном состоянии (энергия возбуждения составляет 2,170 МэВ). В возбужденном состоянии атом находится ограниченное время, после чего он переходит в основное состояние, испуская при этом g -квант. Энергия этого кванта в точности равна энергии возбуждения.

В третьем случае атом дочернего нуклида также образуется в возбужденном состоянии (энергия возбуждения составляет 3,77 МэВ). Однако, в отличие от второго случая здесь атом дочернего нуклида может перейти в основное состояние двумя путями.

Во-первых, атом может сразу перейти в основное состояние, испустив g -квант с энергией 3,77 МэВ. Вероятность такого перехода невелика и только 0,06% атомов "идут" по этому пути.

Во-вторых, (по этому пути идет подавляющее большинство атомов - 99,94%) атом может сначала испустить g -квант с энергией 1,60 Мэв и перейти в состояние с меньшей энергией возбуждения, а затем, по истечении некоторого времени, перейти в основное состояние, испуская g -квант с энергией 2,17 МэВ. Такое последовательное испускание g -квантов называется g -каскадом.

Очевидно, что энергетический спектр g -квантов в данном случае будет линейчатым . В спектре будет три линии с энергиями 1,60 МэВ, 2,17 МэВ и 3,77МэВ.

Если атомы дочернего нуклида образуются только в основном состоянии то в этом случае материнский нуклид будет чистым a - или b -излучателем, а g -излучения не будет.

Примером может служить распад Полония-210 (чистый a -излучатель), схема которого приведена на Рис.8.

При эмиссии g -квантов энергия квантов может находиться в пределах от 5 КэВ до 7МэВ, причем нижний предел находится в области характеристического рентгеновского излучения.

Ввиду того, что g -кванты не имеют ни электрического заряда, ни массы покоя испускание g -квантов не приводит к изменению числа нуклонов A и заряда ядра Z .

Кванту с энергией D E , равной разности энергий ядра дочернего нуклида в начальном (возбужденном) E 2 и E 1 конечном (основном или возбужденном с меньшей энергией возбуждения):

D E = E 2 - E 1 = E g

далеко не всегда удается покинуть атом.

Он часто взаимодействует с одним из электронов оболочек атома. Если энергия D E больше энергии связи электрона E св , то электрон имеет шанс покинуть атом. Такие электроны называются электронами конверсии . Очевидно, что энергия таких электронов будет также как и энергия g -квантов дискретной :

E е = E g - E св - E отд

где E отд энергия отдачи дочернего нуклида (см. Рис. 9).

Рис. 9 Пояснение понятия "отдача"

В большиестве случаев электронами конверсии являются электроны ближайшей к ядру К-оболочки. Если же энергия, отданная ядром, меньше E св для электронов К-оболочки, то электроны конверсии отщепляются от внешних оболочек (L, M), где энергия связи меньше.

После отщепления электрона конверсии образуется вакансия, которая заполняется электронами с внешних оболочек. При этом образуется соответствующее рентгеновское излучение, называемое характеристическим К a , К b , L a , ...

Характеристическое рентгеновское излучение может в свою очередь конвертироваться. Испускаемые при этом электроны называют по имени ученого их открывшего электронами Оже.

На Рис.10 приведена схема, поясняющая все сказанное.

в-распадом называется самопроизвольное превращение радиоактивного ядра в ядро-изобар или. В этом процессе один из нейтронов ядра превращается в протон или один из протонов - в нейтрон. Таким образом, в-распад является не внутриядерным, а внутринуклонным процессом. Ответственным за в-распад является слабое взаимодействие нуклонов в ядре (см. рис. 1).

Существует три вида в-распада: электронный (в--распад), позитронный (в+-распад) и электронный захват.

Электронный в-распад (в--распад). В этом случае материнское ядро испускает электрон, поэтому зарядовое число дочернего ядра увеличивается на единицу. Электронный в- распад протекает по схеме

При этом распаде наряду с дочерним ядром образуется электрон и электронное антинейтрино. Здесь мы приписали электрону зарядовое число Z=-1 и массовое число А=0, чтобы подчеркнуть сохранение электрического заряда и числа нуклонов в процессе распада.

Примером электронного в-распада может служить превращение углерода в азот:

Из приведенной схемы распада видно, что массовые числа обоих ядер одинаковы, а зарядовое число дочернего ядра на единицу больше, чем у материнского.

В основе электронного в-распада, как уже отмечалось, лежит превращение в ядре нейтрона в протон:

Поэтому можно определить в -распад как процесс самопроизвольного превращения нейтрона в протон внутриатомного ядра.

Дочернее ядро, образующееся при в-распаде, может находиться в возбужденном состоянии. При переходе ядра в основное состояние испускается у-излучение, поэтому в-распад, так же как и б-распад, может сопровождаться испусканием г-квантов.

Рис.4.Энергетический спектр электронов при в--распаде

Как показывают экспериментальные исследования, электроны, образующиеся при в--распаде, имеют широкий энергетический спектр от нуля до максимального значения Еmах (рис. 4). Величина dN, определяет число электронов, энергия которых заключена в интервале от Е до E + dE. Площадь под кривой (см. рис. 4) численно равна полному числу электронов, испускаемых радиоактивным препаратом в единицу времени. Энергия Еmах определяется разностью значений массы материнского ядра и массы продуктов распада -- электрона и дочернего ядра (см. выражение (1))

Первоначально, до открытия нейтрино, казалось, что в--распад протекает с нарушением закона сохранения энергии. Действительно, если бы материнское ядро распадалось только на дочернее ядро и электрон, то энергия электрона, согласно (1), не могла быть меньше Еmах. Для того чтобы объяснить "исчезновение" энергии (?Е = Еmах -Е), В. Паули в 1932 г. выдвинул гипотезу, согласно которой при в--распаде испускается еще одна частица, которая и уносит энергию?Е. Так как эта частица никак себя не проявляла, то следовало предположить, что она электронейтральна и обладает очень малой массой. Эта частица, названная Э. Ферми нейтрино, что дословно означает "маленький нейтрон", была экспериментально обнаружена лишь в 1956 г. За проведение экспериментальных исследований по обнаружению нейтрино Ф. Райнес и К. Коуэн в 1995 г. были удостоены Нобелевской премии по физике.

Установлено, что существует несколько типов нейтрино: электронное ve, мюонное vм, тау-лептонное vф и их античастицы.

Тип нейтрино определяется заряженной частицей, вместе с которой нейтрино рождается и с которой взаимодействует. в--распад сопровождается испусканием электронного антинейтрино ve. Именно эта частица и приведена в записанных выше схемах распада. Вопрос о массе нейтрино рассмотрен в (рис.1.).

Позитронный в-распад (в+-распад). В случае позитронного в-распада ядро испускает позитрон, в результате чего его зарядовое число Z уменьшается на единицу. Позитронный в-распад осуществляется по схеме

В качестве примера приведем превращение азота в углерод

Позитронный в-распад сопровождается испусканием позитрона е+ и нейтрино ve, т. е. тех частиц, которые представляют собой античастицы по отношению к частицам, испускаемым при электронном в-распаде (е -- и ve).

В основе в+-распада, как уже отмечалось, лежит превращение в ядре протона в нейтрон:

Поскольку масса протона меньше массы нейтрона, то для свободного протона такой процесс невозможен по энергетическим соображениям (см. выражение (1)). Однако протон, находящийся в ядре, может получать необходимую энергию от других нуклонов ядра.

Электронный захват. Третий вид в-распада -- электронный захват -- представляет собой поглощение ядром одного из электронов электронной оболочки своего атома. Чаще всего поглощается электрон из K-оболочки, поэтому электронный захват называют еще К-захватом. Реже поглощаются электроны из L- или М-оболочек.

В результате К-захвата происходит превращение одного из протонов ядра в нейтрон, сопровождающееся испусканием нейтрино:

Схема К-захвата имеет следующий вид:

На освободившееся в результате К-захвата место в электронной оболочке атома могут переходить электроны из вышележащих слоев, в результате чего возникает рентгеновское излучение. При исследовании этого излучения был открыт К-захват американским физиком Л.Альваресом в 1937 г.

Примером электронного захвата может служить превращение калия в аргон

Подводя итог описанию б- и в-распадов, следует отметить, что б-распад наблюдается только у тяжелых ядер и некоторых ядер редкоземельных элементов. Напротив, в-активные ядра более многочисленны. Практически для каждого атомного номера Z существуют нестабильные изотопы, обладающие в±-активностью.

Энергия, выделяющаяся при в-распаде, лежит в пределах от 0,0186 МэВдо 16 МэВ. Период полураспада в-активных ядер меняется от 10-2с (для) до 4*1012 лет (для).

Спонтанное деление тяжелых ядер.

Самопроизвольное деление тяжелых ядер было впервые обнаружено советскими физиками Г.Н. Флеровым и К.А. Петржаком в 1940 г. у ядер урана. Оно осуществляется по схеме т. е. ядро урана распадается на ядра ксенона и стронция с испусканием трех нейтронов.

Спонтанное деление, так же как и б-распад, происходит за счет туннельного эффекта. Пользуясь капельной моделью ядра, т. е. считая, что ядро подобно капле жидкости, можно выделить стадии, которые проходит ядро в процессе деления (рис. 5, а). Соответствующий вид потенциальной энергии ядра U для различных деформаций ядра представлен на рис. 5,б.

Рис. 5. Спонтанное деление тяжелого ядра: а -- схема деления; б -- потенциальный барьер деления

Как и при всяком туннельном эффекте, вероятность спонтанного деления очень сильно (по экспоненциальному закону) зависит от высоты барьера деления?U. Для изотопов урана и соседних с ним элементов высота барьера деления составляет?U ? 6 МэВ.

Спонтанное деление является основным каналом распада сверхтяжелых ядер. Осколки деления ядер урана U и плутония Рu асимметричны по массе. С ростом массового числа распадающегося ядра осколки деления становятся более симметричными.