Часы галилея по физике. Галилео галилей, пизанская башня и маятниковые часы

Замечательный пример из истории применения физических открытий - история часов.

В 1583 году девятнадцатилетний студент Галилео Галилей, наблюдая за колебаниями люстры в соборе, заметил, что промежуток времени, в течение которого происходит одно колебание, почти не зависит от размаха колебаний. Для измерения времени юный Галилей использовал свой пульс, потому что точных часов тогда еще не было. Так Галилей сделал свое первое открытие. Впоследствии он стал великим ученым (его имя мы не раз встретим на страницах этого учебника).

Это открытие Галилея использовал в 17-м веке голландский физик Христиан Гюйгенс (о его открытиях узнаем в старших классах, когда будем изучать световые явления). Гюйгенс сконструировал первые маятниковые часы: в них время измеряется числом колебаний груза, подвешенного на стержне. Маятниковые часы были намного точнее своих предшественников - песочных, водяных и солнечных часов: они отставали или спешили всего на 1-2 минуты в сутки. И сегодня еще в некоторых домах можно увидеть маятниковые часы (рис. 2.4, а): они мерно тикают, превращая секунды будущего в секунды прошлого.

Рис. 2.4. Первыми точными часами были маятниковые часы, но они были довольно громоздкими (а). Намного более удобны пружинные часы - их можно носить на руке (б). Самыми распространенными сегодня являются кварцевые часы (в)

Однако маятниковые часы довольно громоздкие: их можно поставить на пол или повесить на стену, но нельзя положить в карман или носить на руке. В 17-м веке английский физик Роберт Гук, изучая свойства пружин, открыл закон, названный впоследствии его именем (мы вскоре познакомимся с этим законом). Одно из следствий закона Гука похоже на открытие юного Галилея: оказывается, промежуток времени, в течение которого пружина совершает одно колебание, также почти не зависит от размаха колебаний. Это позволило сконструировать пружинные часы (18-й век). Мастера-часовщики научились делать их такими маленькими, что эти часы можно было носить в кармане или на руке (рис. 2.4, б). Точность хода пружинных часов примерно такая же, как маятниковых, но пружинные часы надо заводить каждый день, и к тому же они иногда начинают сильно спешить или отставать, а то и вовсе останавливаются. Сколько людей опоздали на поезд или на свидание только из-за того, что их часы отстали или их забыли в этот день завести!

В 20-м веке, изучив электрические свойства кварца (распространенного минерала), ученые и инженеры создали кварцевые часы - намного более надежные и точные, чем пружинные. Кварцевые часы не надо заводить: они работают от батарейки, которой хватает на несколько месяцев и даже лет, а погрешность их хода составляет не более нескольких минут за год. В наши дни именно кварцевые часы стали наиболее распространенными (рис. 2.4, в).

А самыми точными сегодня являются атомные часы, действие которых основано на колебаниях атомов.

Зато у себя дома в рабочем кабинете, который стал первой на нашей планете физической лабораторией, Галилей ухитрился замедлить падение. Оно стало доступно и взгляду и тщательному, неторопливому изучению.

Ради этого Галилей построил длинный (в двенадцать локтей) наклонный желоб. Изнутри обил его гладкой кожей. И спускал по нему отшлифованные шары из железа, бронзы, кости.

Делал, например так.

К шару, находившемуся в желобе, прикреплял нитку. Перекидывал ее через блок, а к другому ее концу подвешивал гирю, которая могла опускаться или подниматься отвесно. Гирю тянула вниз ее собственная тяжесть, а вверх, через нить, - шарик из наклонного желоба. В результате шарик и гиря двигались так, как хотел экспериментатор - вверх или вниз, быстро или медленно, смотря по наклону желоба, весу шарика и весу гири. Шарик и гиря могли, таким образом, перемещаться под действием силы тяжести. А это и было падение. Правда, не свободное, искусственно замедленное.

Сперва Галилей отыскал закон устойчивого состояния этой системы: вес гири, помноженный на высоту поднятого конца наклонного желоба, должен быть равен весу шарика, помноженному на длину желоба. Так появилось условие равновесия системы - галилеевский закон наклонной плоскости.

О падении и его секретах еще ничего не было сказано.

Неподвижность изучать нетрудно: она постоянна во времени. Проходят секунды, минуты, часы - ничто не меняется.

Весы да линейки - вот и все, что нужно для измерений * .

* (Потому-то с глубокой древности начала развиваться статика-область физики, занимающаяся всякого рода неподвижностями: уравновешенными весами, блоками, рычагами. Все это вещи нужные, понимать их важно и полезно, недаром им посвятил много времени прославленный грек Архимед. Даже в неподвижности он подметил многое, что необходимо изобретателям "возможных машин Тем не менее, если быть придирчивым, это еще не была настоящая физика. Это была только подготовка к ней. подлинная физика началась с изучения движений. )

Затем Галилей стал изучать движение шаров. Этот-то день и был днем рождения физики (увы, календарная дата его неведома). Потому что именно тогда подвергся первому лабораторному исследованию процесс, изменяющийся во времени. Пошли в ход не только линейки, но и часы. Галилей научился отмеривать длительность событий, то есть исполнять главную операцию, присущую всякому физическому эксперименту.

Поучительна легенда о лабораторных часах Галилея. В то время нельзя было купить в магазине секундомер. Даже ходиков еще не изобрели. Галилей же вышел из положения совсем особым образом. Он отсчитывал время ударами своего пульса, потом, как уверяют давние биографы, устроил неплохие лабораторные часы из неожиданных составных частей: ведра, весов и хрустального бокала. В дне ведра проделал дырочку, через которую текла ровная струйка воды. По солнцу замечал, сколько унций воды вытекало за час, и затем высчитывал вес воды, вытекающей за минуту и за секунду.

И вот опыт. Ученый опускает в желоб шар и тут же подставляет под струйку бокал. Когда шар достигает заранее намеченной точки, быстро отодвигает бокал. Чем дольше катился шар, тем больше натекло воды. Ее остается поставить на весы - и время измерено. Чем не секундомер!

"Мои секунды мокрые, - говорил Галилей, - но зато их можно взвешивать".

Соблюдая элементарную строгость, стоит, впрочем, заметить, что эти часы не так просты, как может показаться. Вряд ли Галилей учитывал уменьшение давления (а значит, и скорости) водяной струи с понижением уровня воды в ведре. Этим можно пренебречь, лишь если ведро очень широкое, а струйка - узкая. Возможно, так оно и было.

Часто ли задумываются люди над вопросом, когда и кто изобрел маятник , наблюдая за качанием маятника в часах? Этим изобретателем был Галилео . После бесед с отцом, (подробнее: ) Галилей вернулся в университет, но уже не на медицинский факультет, а на философский, где преподавали математику и физику. В те времена эти науки еще не отделялись от философии. На философском факультете Галилей решил терпеливо изучить , учение которого основывалось на созерцании и не подтверждалось опытами.

Галилей в Пизанском соборе

Всем студентам, по университетским правилам, полагалось посещать церковь. Галилео, будучи верующим человеком, унаследовал от отца равнодушие к церковным обрядам, и ревностным молельщиком назвать его было нельзя. Как сообщает его ученик Вивиани , в 1583 году Галилей , находясь во время богослужения в Пизанском соборе , обратил внимание на люстру , подвешенную к потолку на тонких цепочках. Служители, зажигавшие свечи в люстрах, видимо, толкнули ее, и тяжелая люстра медленно раскачивалась. Галилей стал наблюдать за ней: размахи люстры постепенно укорачивались, ослабевали, но Галилею показалось, что, хотя размахи люстры уменьшаются и затихают, время одного качания остается неизменным . Чтобы проверить эту догадку, нужны были точные часы, а часов Галилей не имел - их тогда еще не изобрели. Юноша догадался использовать вместо секундомера биение своего сердца. Нащупав на руке пульсирующую жилку, Галилей считал удары пульса и одновременно качание люстры. Догадка как будто подтверждалась, но люстра, к сожалению, перестала качаться, а подтолкнуть ее во время богослужения Галилей не решился.

Изобрел маятник Галилей

Вернувшись домой, Галилей провел опыты . Он привязал на нитки и стал раскачивать разные предметы, попавшиеся ему под руку: ключ от двери, камешки, пустую чернильницу и другие грузики. Эти самодельные маятники он подвесил к потолку и смотрел, как они качаются. Отсчет времени он по-прежнему вел по ударам пульса. Прежде всего Галилей убедился, что легкие предметы качаются так же часто, как и тяжелые, если они висят на нитках одинаковой длины. А зависят качания только от длины нити : чем нитка длиннее, тем реже качается маятник, а чем короче, тем качания чаще. Частота качаний зависит только от длины маятника, но отнюдь не от его веса . Галилей укоротил нитку, на которой висела пустая чернильница; сделал так, чтобы она качалась в такт биению пульса и на каждый удар сердца приходилось одно качание маятника. Затем он подтолкнул чернильницу, а сам уселся в кресло и стал считать пульс, наблюдая за маятником. Сначала чернильница, раскачиваясь, делала довольно широкие размахи и быстро летала из стороны в сторону, а потом ее размахи становились все меньше, а движение медленнее; таким образом время одного качания заметным образом не изменялось. И большие и малые размахи маятника все равно совпадали с ударами пульса. Но тут Галилей заметил, что от волнения его «секундомер» - сердце - начал биться быстрее и мешать опыту. Тогда он стал повторять свой опыт много раз подряд, чтобы успокоить сердце. В результате этих опытов Галилей убедился, что время одного качания заметным образом не меняется - оно остается одинаковым (если бы у Галилея имелись современные точные часы, он мог бы заметить, что небольшая разница между большими и маленькими качаниями все же есть, но она очень мала и почти неуловима).

Прибор пульсологий

Размышляя о своем открытии, Галилей подумал, что оно может пригодиться врачам, для того чтобы считать пульс у больных людей. Молодой ученый придумал небольшой приборчик , названный пульсологием . Пульсологий быстро вошел во врачебную практику. Врач приходил к больному, одной рукой щупал пульс, а другой подтягивал или удлинял маятник своего прибора так, чтобы качания маятника совпадали с ударами пульса. Потом по длине маятника врач определял частоту биения сердца больного. Эта история первого научного открытия Галилея показывает, что Галилей обладал всеми качествами настоящего ученого. Он отличался незаурядной наблюдательностью; тысячи, миллионы людей видели, как раскачиваются люстры, качели, плотницкие отвесы и другие предметы, подвешенные на шнурках, нитках или цепочках, и только Галилей сумел увидеть то, что ускользало от внимания многих. Он проверил свой вывод опытами и тотчас же нашел практическое применение этому открытию. К концу своей жизни ученый доказал, что изобретенный им маятник может стать прекрасным регулятором для часов . С тех пор маятник служит в стенных часах. Галилей сделал часы с маятником одним из точнейших механизмов.
Рисунок Леонардо да Винчи, изображающий часовой механизм

Так и оказалось: каждый ход люстры-маятника, имел одну и ту же длительность. Позже Галилей установил: эта длительность или, как говорят физики, период колебаний, нисколько не зависит от массивности маятника, а лишь - от его длины. Чем он короче, тем меньше времени занимает каждое колебание.

Только в конце жизни на вилле Арчетри (близ Флоренции) осужденный инквизицией за признание учения Коперника и едва не отправленный на костер Галилей смог заняться созданием давно задуманных им часов. Близкий друг ученого Вивиани вспоминал: «В один из дней 1641 года, когда я находился на вилле Арчетри, Галилей поделился со мной своими мыслями о возможности присоединить маятник к часам».

Но старый ученый (ему шел уже 78 год), ослепший и потерявший силы, не смог закончить начатую работу. Он попросил сделать это своего сына Винченцо. Вскоре Галилей умер. Винченцо выполнил просьбу отца, сделал модель часов, но судьба ее оказалась печальной.

Великий итальянский ученый Галилео Галилей

Механизм маятниковых часов Галилея

Сын ученого Винченцо Галилей показывает модель маятниковых часов своего отца

Винченцо ненадолго пережил своего гениального отца. Перед смертью в приступе тяжелой душевной болезни он уничтожил часы, и много лет о них никто ничего не знал.

Потерянное первенство

Не знал о часах Галилея и голландский ученый Христиан Гюйгенс. В 1658 году (через 16 лет после смерти Галилея) в Гааге вышла его небольшая книжка под коротким названием «Часы». В ней Гюйгенс писал об изобретенных им маятниковых часах. И только эта небольшая книжка была издана, как возникла неприятная шумиха.

Вивиани (его имя уже упоминалось) заявил, что первенство в изобретении часов с маятником принадлежит вовсе не Гюйгенсу, а Галилею, который на много лет опередил голландца.

Маятниковые часы Христиана Гюйгенса со шпиндельным ходом

Гюйгенс был честным человеком и не стал отрицать первенство Галилея. Когда один французский ученый прислал ему рисунок галилеевских часов, он написал в ответ: «Вы доставили мне большое удовольствие, переслав чертеж часов, начатых Галилеем. Я вижу, что они имеют маятник, однако он применен не так, как у меня».

Гюйгенс заверял, что маятниковые часы создал совершенно самостоятельно, «руководствуясь только своим собственным умом и ничем другим», да и по устройству они сильно отличаются от часов Галилея. Он может лишь гордиться тем, что вслед за великим Галилеем пришел к той же мысли.

Хотя Гюйгенс и потерял первенство, все равно его заслуги в часовом деле, в науке о часах огромны. После него началась новая страница в истории часов.

Но каково же было устройство часов Гюйгенса?

Знаменитый голландский ученый Христиан Гюйгенс

Они, как и часы с билянцем, имели коронное колесо (только расположенное иначе, горизонтально) и шпиндель с палетами. При качании маятника связанный с ним шпиндель своими палетами так же то задерживал, то отпускал коронное колесо на один зубец, получая в ответ толчок. Это не позволяло мятнику остановиться. А вращение коронного колеса передавалось другим шестеренкам и стрелкам. Двигателем же часов по-прежнему служила гиря, подвешенная на цепочке.

Суточная погрешность часов Гюйгенса не превышала десяти секунд, но оказалось, что можно сделать и лучше. Английский ученый Роберт Гук предложил анкерный ход - более точный, чем шпиндельный. Над зубчатым ходовым колесиком Гук поместил анкер, деталь, напоминающую маленький якорь. Соединенный с маятником, он тоже раскачивался и, цепляясь за зубцы ходового колеса, регулировал его движение. А в ответ, получая от зубцов толчки, сам раскачивал маятник.

Вперед >>>

Ускорение силы тяжести

Галилей обратил внимание на то, что всякое падающее тело сначала летит медленно, а потом все быстрее и быстрее - его движение ускоряется. Ученому хотелось измерить, насколько именно ускоряется падение, то есть насколько возрастает в каждую секунду скорость падающего предмета. Но как провести такие измерения? Сбрасывать шарики с высокой башни бесполезно: они падают слишком быстро, а измерять короткие промежутки времени Галилею было нечем - часов-секундомеров тогда не существовало.

Ученый решил замедлить падение так, чтобы оно стало доступным измерению с его скудными средствами. Пусть, решил Галилей, шарик скатывается по наклонному желобку. Если наклон невелик, шарик покатится так медленно, что можно успеть проследить за изменением его скорости.

Галилей взял доску толщиной в три пальца и длиной в двенадцать локтей (на наши меры это приблизительно семь метров), поставил ее на ребро и вдоль всей доски вырезал желобок. Желобок он оклеил самым гладким пергаментом, а пергамент старательно выгладил и отполировал, чтобы небольшой бронзовый шарик катился по желобку без помех.


Однако для измерений все равно ему нужны были часы. Некоторое подобие часов тогда имелось, но с очень несовершенным механизмом. Современник Галилея - астроном Тихо Браге купил для своей обсерватории механические часы, но почти не пользовался ими. Они были на редкость капризны и ненадежны.

Словом, часов Галилей не имел. Такое препятствие, конечно, не могло его остановить. Галилей изготовил самодельные водяные часы.

Взял ведро, просверлил в его днище отверстие и подставил под него стакан. В ведро Галилей налил воды, а дырочку заткнул.

Во время опытов ученый одной рукой пускал шарик по желобу, а другой управлял своими часами: пустит шарик и откроет отверстие, а как только шарик докатится до намеченной черты, затыкает дырочку и убирает стакан с набежавшей в него водой.



Галилей взвешивал стакан и по количеству собравшейся в нем воды определял промежутки времени. Он в шутку говорил:

Мои секунды мокрые, но зато я могу их взвешивать.

Конечно, при таком способе измерения времени очень легко было ошибиться. Чтобы уменьшить величину возможной ошибки, Галилей каждый опыт повторял по нескольку раз, стараясь натренироваться так, чтобы как можно проворнее открывать и закрывать дырочку в ведре с водой. В этом хлопотливом деле ученый приобрел большую сноровку.

Сначала Галилей пускал шарик с верхнего конца наклонного желоба так, чтобы он прокатился по всей его длине. Воды в этом случае набирался полный стаканчик. Потом Галилей разметил желобок по длине на четыре равные части и стал замечать время, в течение которого шарик пробегал только четвертую часть всего пути. Воды при этом набиралось только полстаканчика - ровно вдвое меньше, чем в первом случае.

Затем ученый скатывал шарик с середины желоба, то есть давал ему пробежать половину пути, и опять взвешивал набежавшую воду.

Галилей сделал несколько сотен таких опытов и убедился, что падение шарика по наклонному желобу не просто ускоренное движение, а равномерно-ускоренное.

Скорость падения шарика возрастает равномерно - она прибывает каждую секунду, так сказать, одинаковыми порциями. Свободное падение предметов происходит по тому же закону.

Однако точно измерить, насколько возрастает скорость падающих предметов, самому Галилею так и не удалось - он допустил ошибку, уменьшившую величину ускорения ровно, вдвое. Эту ошибку Галилея исправили другие ученые. Теперь установлено, что свободно падающее тело за одну секунду ускоряет свое движение на 9,81 метра в секунду.

Величина 9,81 метра в секунду называется ускорением свободного падения под действием силы тяжести.

<<< Назад
Вперед >>>