Исследование космического пространства. История освоения космоса

Человека всегда интересовало, как устроен окружающий его мир. На первых порах это были простые наблюдения и наивные толкования происходящих явлений. Они дошли до нас в виде сказаний и мифов. Постепенно знания накапливались. Древние учёные, наблюдая за Солнцем и Луной, смогли предсказывать солнечные и лунные затмения, составлять календари. Точность этих расчётов поражает современных исследователей: ведь в те времена не было никаких приборов, учёные вели свои наблюдения невооружённым глазом.

Позднее были созданы различные приборы, облегчающие наблюдения. Важнейшим из них стал телескоп (от греческих слов «теле» - далеко, «скопео» - смотреть). Использование телескопов позволило не только изучить Солнечную систему, но и заглянуть в глубины Вселенной.

Следующим шагом в изучении и освоении космоса стало создание ракеты. Первым учёным, который доказал, что реальным средством освоения космоса станет ракета, был наш соотечественник, основоположник современной космонавтики Константин Эдуардович Циолковский (1857-1935). Но прошли годы, прежде чем эта задача была решена. 4 октября 1957 г. в нашей стране был осуществлён запуск первого искусственного спутника Земли.

Большой вклад в развитие отечественной космонавтики внёс учёный, конструктор и организатор производства ракетнокосмической техники Сергей Павлович Королёв (1906-1966) . Началась новая эра в изучении космоса.

В настоящее время в освоении космоса участвуют Россия, США, многие страны Европы, Япония, Китай, Индия, Бразилия, Канйда, Украина. Осуществлён запуск космических станций к планетам Солнечной системы и их спутникам, получены их фотографии с близкого расстояния, осуществлена посадка на поверхность Венеры, Марса и других планет.

Некоторые важнейшие даты в освоении космоса

3 ноября 1957 г. - запуск второго искусственного спутника Земли «Спутник-2», на борту которого впервые находилось живое существо - собака Лайка (СССР).

14 сентября 1959 г. - станция «Луна-2» впервые в мире достигла поверхности Луны, доставив вымпел с гербом СССР (СССР).

4 октября 1959 г. - станция «Луна-3» впервые в мире сфотографировала невидимую с Земли сторону Луны (СССР).

19-20 августа 1960 г. - первый орбитальный полёт в космос живых существ - собак Белки и Стрелки - на корабле «Спутник-5» с успешным возвращением на Землю (СССР).

12 апреля 1961 г. - первый полёт человека в космос на корабле «Восток-1» (Юрий Алексеевич Гагарин, СССР).

16-19 июня 1963 г. - первый полёт в космос женщины-космонавта на космическом корабле «Восток-6» (Валентина Владимировна Терешкова, СССР).

18 марта 1965 г. - первый выход человека в открытый космос из корабля «Восход-2» (Алексей Архипович Леонов, СССР).

1 марта 1966 г. - первый перелёт космического аппарата с Земли на другую планету; станция «Венера-3» впервые достигла поверхности Венеры, доставив вымпел СССР (СССР).

15 сентября 1968 г. - возвращение космического аппарата «Зонд-5» на Землю после первого облёта Луны. На борту находились живые существа: черепахи, плодовые мухи, черви, растения, семена, бактерии (СССР).

21 июля 1969 г. - первая высадка человека на Луну в рамках лунной экспедиции корабля «Аполлон-11», доставившей на Землю в том числе и пробы лунного грунта (Нил Армстронг, США).

3 марта 1972 г. - запуск первого аппарата «Пионер-10», покинувшего впоследствии пределы Солнечной системы (США).

12 апреля 1981 г. - вывод на орбиту первого многоразового транспортного космического корабля «Колумбия» (США).

24 июня 2000 г. - станция «Near Shoemaker» стала первым искусственным спутником астероида (США).

28 апреля - 6 мая 2001 г. - полёт первого космического туриста на борту корабля «Союз-ТМ-32» на Международную космическую станцию (Деннис Тито, США).

  1. Как древние люди изучали Вселенную?
  2. Кто из учёных доказал, что осваивать космос можно с помощью ракеты?
  3. Когда был запущен первый искусственный спутник Земли?
  4. Кто был первым космонавтом?

Человека всегда интересовало, как устроен окружающий его мир. В древности люди наблюдали и пытались объяснить происходящие в природе явления. Позднее были созданы различные приборы, важнейшим из которых стал телескоп. Использование телескопов позволило не только изучать Солнечную систему, но и заглянуть в глубины Вселенной. Следующим шагом в изучении и освоении космоса стало создание ракеты. Большой вклад в развитие отечественной космонавтики внесли К. Э. Циолковский, С. П. Королёв, Ю. А. Гагарин. В настоящее время в освоении космоса участвуют многие страны мира, в том числе и Россия.

Современные представления о строении Вселенной складывались постепенно, на протяжении веков. Долгое время её центром считалась Земля. Такой точки зрения придерживались древнегреческие учёные Аристотель и Птолемей.

Новую модель Вселенной создал Николай Коперник - великий польский астроном. Согласно его модели, центром мира является Солнце, а вокруг него обращаются Земля и другие планеты. Согласно современным представлениям, Земля входит в состав Солнечной системы, которая является частью Галактики. Галактики образуют сверхскопления - мегагалактики.

Солнечную систему образуют 8 планет с их спутниками, астероиды, кометы, множество частичек пыли. Планеты делят на две группы. Меркурий, Венера, Земля, Марс - это планеты земной группы. К группе планет-гигантов относят Юпитер, Сатурн, Уран, Нептун.

Астероиды и кометы - небольшие небесные тела, входящие в состав Солнечной системы. Метеором называют вспышку света, возникающую при сгорании в земной частичек космической пыли, а космические тела, не сгоревшие в атмосфере и достигшие поверхности Земли, называют метеоритами.

Звёзды - это гигантские пылающие шары, расположенные очень далеко от нашей планеты. Ближайшая к нам звезда - Солнце, центр нашей Солнечной системы.

Земля - уникальная планета, только на ней обнаружена жизнь. Существованию живого способствует ряд особенностей Земли: определённое расстояние от Солнца, скорость вращения вокруг собственной оси, наличие воздушной оболочки и больших запасов воды, существование почвы.

В древности люди наблюдали за происходящими в природе явлениями и пытались их объяснить. Изобретение различных приборов, в том числе телескопа, облегчило эти наблюдения. Следующим шагом в изучении и освоении космоса стало создание ракеты. В настоящее время в освоении космоса принимают участие многие страны мира.

Буду благодарен, если Вы поделитесь этой статьей в социальных сетях:


Поиск по сайту.

Материал из Юнциклопедии


Не так много лет минуло со дня запуска в 1957 г. первого искусственного спутника Земли, но за этот короткий срок космические исследования сумели занять одно из ведущих мест в мировой науке. Ощутив себя гражданином Вселенной, человек, естественно, захотел лучше узнать свой мир и его окружение.

Уже первый спутник передал ценную информацию о свойствах верхних слоев атмосферы Земли, об особенностях прохождения радиоволн через ионосферу. Второй спутник положил начало целому научному направлению - космической биологии: на его борту в космос впервые отправилось живое существо - собака Лайка. Третий орбитальный полет советского аппарата снова посвящался Земле - исследованию ее атмосферы, магнитного поля, взаимодействия воздушной оболочки с солнечным излучением, метеорной обстановки вокруг планеты.

После первых запусков стало ясно, что исследование космоса должно вестись целенаправленно, по долгосрочным научным программам. В 1962 г. в Советском Союзе начались запуски автоматических спутников серии «Космос», число которых в настоящее время приближается уже к 2 тыс. Спутники «Космос» выводятся на близкие и далекие от Земли орбиты, оснащаются научными приборами для изучения ближайших окрестностей планеты и многообразных явлений в верхней атмосфере и околоземном космическом пространстве.

Спутники «Электрон» и орбитальные автоматические обсерватории «Прогноз» рассказали о Солнце и его определяющем влиянии на земную жизнь. Изучая наше светило, мы постигаем также тайны далеких звезд, знакомимся с работой естественного термоядерного реактора, построить который на Земле пока не удается. Из космоса увидели и «невидимое солнце» - его «портрет» в ультрафиолетовых, рентгеновских и гамма-лучах, которые не доходят до поверхности Земли из-за непрозрачности атмосферы в этих участках спектра электромагнитных волн. Кроме спутников-автоматов длительные исследования Солнца вели советские и американские космонавты на орбитальных космических станциях.

Благодаря исследованиям из космоса мы лучше узнали состав, строение и свойства верхних слоев атмосферы и ионосферы Земли, зависимость их от солнечной активности, что позволило повысить надежность прогноза погоды и условий радиосвязи.

«Космический глаз» позволил не только по-новому оценить «внешние данные» нашей планеты, но и заглянуть в ее недра. С орбит лучше обнаруживаются геологические структуры, прослеживаются закономерности строения земной коры и размещения нужных человеку минералов.

Спутники позволяют в считанные минуты просмотреть и огромные акватории, передать их снимки специалистам-океанологам. С орбит получают информацию о направлениях и скорости ветров, зонах зарождения циклонических вихрей.

С 1959 г. началось изучение спутника Земли - Луны - с помощью советских автоматических станций. Станция «Луна-3», облетев Луну, впервые сфотографировала ее обратную сторону; «Луна-9» осуществила мягкую посадку на спутник Земли. Чтобы иметь более ясное представление о всей Луне, необходимы были длительные наблюдения с орбит ее искусственных спутников. Первый из них - советская станция «Луна-10» - был запущен в 1966 г. Осенью 1970 г. к Луне ушла станция «Луна-16», которая, вернувшись на Землю, привезла с собой образцы пород лунного грунта. Но только длительные систематические исследования лунной поверхности могли помочь селенологам разобраться в происхождении и строении нашего естественного спутника. Такую возможность вскоре предоставили им самоходные советские научные лаборатории - луноходы. Результаты космических исследований Луны предоставили новые данные и об истории происхождения Земли.

Характерные особенности советской программы изучения планет - планомерность, последовательность, постепенное усложнение решаемых задач - особенно ярко проявились в исследованиях Венеры. Два последних десятилетия принесли больше сведений об этой планете, чем весь предыдущий более чем трехвековой период ее изучения. При этом значительная часть информации добыта советской наукой и техникой. Спускаемые аппараты автоматических межпланетных станций «Венера» не раз совершали посадки на поверхность планеты, зондировали ее атмосферу и облака. Советские станции стали и первыми искусственными спутниками Венеры.

Начиная с 1962 г. производится запуск советских автоматических межпланетных станций к планете Марс.

Космонавтика изучает и более удаленные от Земли планеты. Сегодня можно рассматривать телевизионные изображения поверхности Меркурия, Юпитера, Сатурна и их спутников.

Астрономы, получившие в свое распоряжение космическую технику, естественно, не ограничились изучением лишь Солнечной системы. Их приборы, вынесенные за пределы атмосферы, непрозрачной для коротковолновых космических излучений, нацелились в сторону других звезд и галактик.

Идущие от них невидимые лучи - радиоволны, ультрафиолетовое и инфракрасное, рентгеновское и гамма-излучение - несут ценнейшую информацию о том, что происходит в глубинах Вселенной (см. Астрофизика).

Космос… Одно слово, а сколько завораживающих картин встает перед глазами! Мириады галактик, разбросанных по всей Вселенной, далекий и в то же время бесконечно близкий и родной Млечный путь, созвездия Большой и Малой Медведиц, мирно расположившихся на необъятном небосклоне… Перечислять можно до бесконечности. В этой статье мы познакомимся с историей и некоторыми интересными фактами.

Космические исследования в древности: как раньше смотрели на звезды?

В далекой-далекой древности люди не могли наблюдать планеты и кометы через мощные телескопы типа «Хаббл». Единственными приборами для того, чтобы любоваться красотой неба и совершать космические исследования, были их собственные глаза. Конечно, ничего, кроме Солнца, Луны и звезд, человеческие «телескопы» разглядеть не могли (если не считать комету в 1812 году). Поэтому людям оставалось только догадываться о том, как же на самом деле выглядят эти желтый и белый шарики в небе. Но уже тогда население земного шара отличалось внимательностью, поэтому быстро подметило, что эти два кружочка двигаются по небу, то скрываясь за горизонтом, то вновь показываясь. А еще они обнаружили, что не все звезды ведут себя одинаково: какая-то их часть остается неподвижной, а другая изменяет свое положение по сложной траектории. Отсюда и началось великое исследование космического пространства и того, что скрывается в нем.

Особых успехов на этом поприще добились древние греки. Именно они первыми открыли, что наша планета имеет форму шара. Их мнения по поводу расположения Земли относительно Солнца разделились: часть ученых считала, что вращается вокруг небесного светила, остальные полагали, что наоборот (были сторонниками геоцентрической системы мира). К единому мнению древние греки так и не пришли. Все их труды и космические исследования были запечатлены на бумаге и оформлены в целый научный труд под названием «Альмагест». Его автором и составителем является великий древний ученый Птолемей.

Эпоха Возрождения и разрушение прежних представлений о космосе

Николай Коперник - кто не слышал этого имени? Именно он в 15 веке разрушил ошибочную теорию геоцентрической системы мира и выдвинул свою, гелиоцентрическую, которая утверждала, что Земля вращается вокруг Солнца, а не наоборот. Средневековая инквизиция и церковь, к сожалению, не дремали. Подобные речи они тут же провозгласили еретическими, а последователей теории Коперника жестоко преследовали. Один из ее сторонников, Джордано Бруно, был сожжен на костре. Его имя осталось в веках, и до сих пор мы вспоминаем о великом ученом с уважением и благодарностью.

Растущий интерес к космосу

После этих событий внимание ученых к астрономии только усилилось. Космические исследования стали все более и более захватывающими. Едва начался 17 век, произошло новое масштабное открытие: исследователь Кеплер установил, что орбиты, по которым вращаются планеты вокруг Солнца, вовсе не круглые, как считалось раньше, а эллиптические. Благодаря этому событию в науке произошли серьезные изменения. В частности, открыл механику и смог описать закономерности, по которым движутся тела.

Открытие новых планет

На сегодняшний день мы знаем, что всего планет в Солнечной системе восемь. До 2006 года их количество равнялось девяти, но после самую последнюю и удаленную от тепла и света планету - Плутон - исключили из числа тел, обращающихся вокруг нашего небесного светила. Это произошло из-за его малых размеров - площадь одной только России уже больше, чем весь Плутон. Ему был присвоен статус карликовой планеты.

До 17 века люди считали, что всего в Солнечной системе планет пять. Телескопов тогда еще не было, поэтому они судили только по тем небесным телам, которые могли увидеть своими глазами. Дальше Сатурна с его ледяными кольцами ученые ничего увидеть не смогли. Наверное, мы и по сей день бы заблуждались, если бы не Галилео Галилей. Именно он изобрел телескопы и помог ученым совершить исследование других планет и увидеть остальные небесные тела Солнечной системы. Благодаря телескопу стало известно о существовании гор и кратеров на Луне, Сатурна, Марса. Также все тем же Галилео Галилеем были обнаружены пятна на Солнце. Наука не просто развивалась, она летела вперед семимильными шагами. И к началу двадцатого века ученые уже знали достаточно, чтобы построить первый и отправиться покорять звездные просторы.

Советские ученые провели значительные космические исследования и добились очень больших успехов в изучении астрономии и развитии кораблестроения. Правда, с начала 20 века прошло более 50 лет, прежде чем первый космический спутник отправился покорять просторы Вселенной. Это случилось в 1957 году. Аппарат был запущен в СССР с космодрома Байконур. Первые спутники не гнались за высокими результатами - их целью было достичь Луны. Первое устройство для исследования космоса высадилось на лунную поверхность в 1959 году. А также в 20 веке был открыт Институт космических исследований, в котором разрабатывались серьезные научные работы и совершались открытия.

Вскоре запуск спутников стал обыденным явлением, и все-таки только одна миссия по высадке на другую планету окончилась успешно. Речь идет о проекте «Аполлон», в ходе которого несколько раз, согласно официальной версии, была совершена высадка американцев на Луну.

Международная «космическая гонка»

1961 год стал памятным в истории космонавтики. Но еще раньше, в 1960-м, в космосе побывали две собаки, клички которых знает весь мир: Белка и Стрелка. Вернулись они из космоса целыми и невредимыми, прославившись и став настоящими героями.

А 12 апреля следующего года бороздить просторы Вселенной отправился Юрий Гагарин - первый человек, отважившийся покинуть пределы Земли на корабле «Восток-1».

Соединенные Штаты Америки не желали уступать СССР первенство в космической гонке, поэтому хотели отправить своего человека в космос раньше Гагарина. США проиграли и в запуске спутников: России удалось запустить аппарат на четыре месяца раньше Америки. В безвоздушном пространстве уже побывали такие покорители космоса, как Валентина Терешкова и Последний первым в мире совершил выход в открытый космос, а наиболее значительным достижением США в освоении Вселенной было только выведение космонавта в орбитальный полет.

Но, несмотря на значительные успехи СССР в «космической гонке», Америка тоже была не промах. И 16 июля 1969 года космический корабль «Аполлон-11», на борту которого находились покорители космоса в количестве пяти специалистов, стартовал к поверхности Луны. Через пять дней первый человек ступил на поверхность спутника Земли. Звали его Нил Армстронг.

Победа или поражение?

Кто же все-таки выиграл лунную гонку? На этот вопрос точного ответа нет. И СССР, и США показали себя с лучшей стороны: они модернизировали и усовершенствовали технические достижения в космическом кораблестроении, совершили множество новых открытий, взяли бесценные образцы с поверхности Луны, которые были отправлены в Институт космических исследований. Благодаря им было установлено, что спутник Земли состоит из песка и камня, а также то, что на Луне нет воздуха. Следы Нила Армстронга, оставленные более сорока лет назад на лунной поверхности, и ныне находятся там. Их просто нечему стереть: наш спутник лишен воздуха, там нет ни ветра, ни воды. И если отправиться на Луну, то можно оставить и свой след в истории - как в прямом, так и в переносном значении.

Заключение

История человечества богата и обширна, она включает в себя множество великих открытий, войн, грандиозных побед и разрушительных поражений. Освоение внеземного пространства и современные космические исследования занимают по праву далеко не последнее место на страницах истории. Но ничего этого не было бы, не будь таких отважных и самоотверженных людей, как Николай Коперник, Юрий Гагарин, Сергей Королев, Галилео Галилей, Джордано Бруно и многих-многих других. Все эти великие люди отличались выдающимся умом, развитыми способностями к изучению физики и математики, сильным характером и железной волей. Нам есть чему у них поучиться, мы можем перенять от этих деятелей науки бесценный опыт и положительные качества и черты характера. Если человечество будет стараться походить на них, много читать, тренироваться, успешно учиться в школе и университете, то можно с уверенностью сказать, что у нас впереди еще очень много великих открытий, и дальний космос вскоре будет исследован. И, как поется в одной знаменитой песне, на пыльных тропинках далеких планет останутся наши следы.

Не все результаты фундаментальных научных исследований порождают технологии, но абсолютно все современные технологии базируются на фундаментальных научных исследованиях.

Все окружающие нас достижения цивилизации обязаны своим существованием проводившимся ранее фундаментальным научным исследованиям.

Теперь в силу ускорения научно-технического прогресса результаты научных исследований находят применение в технике и быту уже в среднем через промежуток времени 20 - 30 лет. Часть из них вносят решающий вклад в технический прогресс.

Значительную роль в этом процессе играют и фундаментальные науки, изучающие Вселенную. Достаточно напомнить, что гелий был открыт на Солнце и только потом найден на Земле. Для ядерной физики некоторые объекты во Вселенной являются естественной лабораторией, где сама Природа ставит эксперименты, которые невозможны в земных лабораториях. Еще в 1920 году, задолго до создания ядерной физики, на термоядерную реакцию превращения водорода в гелий было указано Артуром Эддингтоном, как на источник энергии излучения звезд.

Кроме того, фундаментальные космические исследования оказывают мощное прямое воздействие (с которым может сравниться, разве что, оборонная индустрия) на развитие технологий. Это происходит из-за постоянных требований экспериментаторов к повышению чувствительности, разрешающей способности и улучшению других параметров научных приборов.

Фундаментальные космические исследования дали мощный толчок развитию наших представлений об устройстве Вселенной

По мнению многих выдающихся ученых современности, на рубеже ХХ и ХХI веков мы стали свидетелями «революции» в астрономии, которая имеет не менее важное значение, чем, ставшая основополагающей для многих отраслей науки, а значит и современных технологий, «революция» в физике, которая произошла в начале ХХ века.

Огромную роль в этом уже сыграли космические средства, обеспечивающие научные исследования многих объектов Вселенной.

В Федеральной космической программе России 2006 - 2015 годы запланировано выполнение более двух десятков проектов научного назначения.

Среди них полномасштабные космические проекты, в рамках которых должны быть созданы специализированные космические аппараты, снабженные целевыми комплексами научной аппаратуры. Кроме того, будет практиковаться дополнительная установка комплексов научной аппаратуры на отечественные космические аппараты, предназначенные для решения народно - хозяйственных задач, а также установка отечественной научной аппаратуры на зарубежные космические аппараты научного назначения.

Особенностью реализации научных космических проектов будет максимальное использование т.н. унифицированных космических платформ - основных составляющих космических аппаратов, на которые возлагаются функция обеспечения необходимых условий работы полезной нагрузки - целевой аппаратуры: для научных исследований, дистанционного зондирования Земли , обеспечения радиосвязи и т.п.

В рамках Федеральной космической программы России 2006 - 2015 годы в разделе «Космические средства для фундаментальных космических исследований» и разделе «Космические средства технологического назначения» предусмотрено, что они и далее будут проводиться по следующим основным направлениям:

  • внеатмосферная астрофизика - получение научных данных о происхождении и эволюции Вселенной;
  • планетология - исследование планет и малых тел Солнечной системы;
  • изучение Солнца, космической плазмы и солнечно - земных связей;
  • исследования в областях космических биологии, физиологии и материаловедения.

Внеатмосферная астрофизика - получение научных данных о происхождении и эволюции Вселенной

Современные астрофизические космические исследования позволяют получить уникальные данные об очень отдаленных космологических объектах, и о событиях происшедших в период зарождения звезд и галактик

Планетология - исследование планет и малых тел Солнечной системы

Эти исследования имеют первостепенное значение для понимания процессов возникновения и развития Солнечной системы. Однако прежде всего, они дают ключ к познанию возможных путей будущей эволюции нашей собственной планеты, к пониманию того, как сохранить возможность существования жизни на Земле для наших потомков.

Изучение Солнца, космической плазмы и солнечно - земных связей

Солнце является ближайшей к нам и довольно типичной звездой, которая наблюдается как протяженный объект. Оно само и его корона представляют собой естественную лабораторию для изучения фундаментальных характеристик плазмы.

Научная значимость исследований Солнца состоит еще и в том, что оно оказывает решающее влияние на основные процессы на Земле, в том числе на некоторые технические системы. Такое воздействие сказывается на работе различных радиосистем, энергосетей, проводных линий связи в Арктике, на интенсивности индуцированных электрических токов в трубопроводах и т.д. В качестве примера можно привести два известных случая выхода из строя протяженных энергосетей: 13 марта 1989 г. при резкой вспышке магнитных вариаций наведенный электрический ток в энергосистеме Hydro-Quebec в Канаде достиг 100 ампер, что вывело эту систему из строя. Это надолго оставило без энергии большой район с населением в несколько миллионов человек. Аналогичные случаи были и в нашей Арктике, например 11-12 февраля 1958 г. на Кольском полуострове. Для нефтепроводов наведенные в них электрические токи, замыкаясь на землю, резко усиливают коррозию, а искрение может приводить к пожарам в местах утечек. Серьезность проблемы лишний раз была продемонстрирована и полным выходом из строя телевизионного ретрансляционного спутника «Telstar-401» произошедшим 11 января 1998 г. в результате его усиленного облучения энергичными частицами.

Постепенно возникает осознание того, что проявления солнечной активности оказывает сильное влияние и на организм человека.

Космический комплекс, обеспечивающий получение результатов комплексных наблюдений излучений Солнца, процессов накопления энергии и ее трансформации в ускоренные частицы во время солнечных вспышек с целью мониторинга «космической погоды» и выработки мероприятий по парированию негативного влияния на здоровье человека.

Исследования в областях космических биологии, физиологии и материаловедения

Изучение воздействия невесомости на живые организмы и физиологических механизмов адаптации к ней в космических полетах, а также изучение комбинированного действия невесомости и других факторов имеют огромное значение для длительных полетов человека, столь необходимых для освоения планет Солнечной системы.

Использование низших организмов для проведения медико-биологических экспериментов (в отличие от экспериментов на человеке) предоставляет возможность более жесткой их постановки, включая последующее препарирование использованного биологического материала. Исследования внутриклеточных процессов, клеток, тканей, органов и организмов в целом на автоматических космических аппаратах серии принесли очень важные результаты. Были получены данные об отсутствии серьезных биологических ограничений продолжительности пребывания живых организмов и человека в условиях космического полета. Показана перспективность применения искусственной силы тяжести для поддержания оптимального состояния организма и предотвращения в нем необратимых изменений. Найдены доказательства необходимости строго дифференцированного подхода к созданию тренажеров для различных мышц и мышечных групп человека.

Физика микрогравитации

Использование космических средств для решения задач космического материаловедения позволяет получать в условиях микрогравитации образцы материалов обладающих уникальными свойствами по сравнению с земными аналогами.

Принципиально новый космический комплекс с возвращаемым космическим аппаратом для проведения ми-крогравитационных экспериментальных исследований предназначен для обеспечения получения фундаментальных знаний о процессах, проходящих в расплавах и растворах, а также в биологических структурах в условиях сверхнизких (ниже 10 -7 g) уровней микрогравитации, в целях их последующего использования при организации промышленного производства новых материалов и биопрепаратов как на Земле, так и с использованием космического комплекса «ОКА-Т-МКС». Срок активного существования космического аппарата на орбите - 1 год

Запуск космического аппарата намечен на 2015 год.

Космический комплекс на основе обслуживаемого в инфраструктуре МКС автоматического космического аппарата, предназначенного для комплексного решения задач в области микрогравитационных и прикладных технологических и биотехнологических исследований.

http://www.roscosmos.ru/main.php?id=25

Изучение космоса началось еще с самых древних времен, когда человек только учился считать по звездам, выделяя созвездия. И только всего четыреста лет назад, после изобретения телескопа, астрономия начала стремительно развиваться принося в науку все новые открытия.

XVII век стал переходным веком для астрономии, тогда начали применять научный метод в исследовании космоса, благодаря которому был открыт Млечный путь, другие звездные скопления и туманности. А с созданием спектроскопа, который способен разложить через призму свет, излучаемый небесным объектом, ученые научились измерять данные небесных тел, такие, как температура, химический состав, масса и другие измерения.

Начиная с конца XIX века астрономия вступила в фазу многочисленных открытий и достижений, главным прорывом науки в XX веке стало запуск первого спутника в космос, первый полет человека в космос, выход в открытое космическое пространство, высадка на луне и космические миссии к планетам Солнечной системы. Изобретения сверхмощных квантовых компьютеров в XIX веке также обещают многие новые изучения, как уже известных планет и звезд, так и открытия новых далеких уголков вселенной.